{"title":"常压加压蒸煮对制备层状沸石结构及裂解性能的影响","authors":"Chengqiang Wang, Enhui Xing, Yibin Luo, Ying Ouyang, Xingtian Shu, Xiuzhi Gao","doi":"10.1021/acs.iecr.5c03606","DOIUrl":null,"url":null,"abstract":"This study focuses on exploring the impact of atmosphere-controlled pressurized steaming (at 500 °C and 0.3 MPa) on the structure and catalytic performance of LaY zeolite. A weakly alkaline calcination atmosphere (pH 9.6) is introduced during the pressurized steaming process. This introduction significantly promotes the solid-state migration of La<sup>3+</sup> ions from supercages to sodalite cages, resulting in an 18% increase in the <i>I</i><sub>1</sub>/<i>I</i><sub>2</sub> ratio. It also enhances the B/L acid ratio by 45% and improves the hydrothermal stability of the zeolite with the crystallinity retention rate rising by 25%. The proposed process achieves a balanced dealumination-desilication mechanism. While maintaining the crystallinity of the zeolite, it generates uniform 3–4 nm intracrystalline mesopores. The mesopore volume accounts for an increasing proportion of the total pore volume, from 5% to 16%. Catalytic evaluation results show that, compared with the atmospheric calcination reference sample, the heavy oil conversion rate increases by 8.8% points, the gasoline yield rises by 8.0% points, and the coke yield is lower. This can be attributed to the mesopores improving the accessibility of reactants and reducing diffusion resistance. This research demonstrates that the atmosphere-controlled pressurized steaming under a weakly alkaline calcination atmosphere is an effective strategy for preparing LaY zeolite with high stability and high activity, which is suitable for heavy oil cracking.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Atmosphere-Controlled Pressurized Steaming on the Structure and Cracking Performance of As-Prepared LaY Zeolite\",\"authors\":\"Chengqiang Wang, Enhui Xing, Yibin Luo, Ying Ouyang, Xingtian Shu, Xiuzhi Gao\",\"doi\":\"10.1021/acs.iecr.5c03606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on exploring the impact of atmosphere-controlled pressurized steaming (at 500 °C and 0.3 MPa) on the structure and catalytic performance of LaY zeolite. A weakly alkaline calcination atmosphere (pH 9.6) is introduced during the pressurized steaming process. This introduction significantly promotes the solid-state migration of La<sup>3+</sup> ions from supercages to sodalite cages, resulting in an 18% increase in the <i>I</i><sub>1</sub>/<i>I</i><sub>2</sub> ratio. It also enhances the B/L acid ratio by 45% and improves the hydrothermal stability of the zeolite with the crystallinity retention rate rising by 25%. The proposed process achieves a balanced dealumination-desilication mechanism. While maintaining the crystallinity of the zeolite, it generates uniform 3–4 nm intracrystalline mesopores. The mesopore volume accounts for an increasing proportion of the total pore volume, from 5% to 16%. Catalytic evaluation results show that, compared with the atmospheric calcination reference sample, the heavy oil conversion rate increases by 8.8% points, the gasoline yield rises by 8.0% points, and the coke yield is lower. This can be attributed to the mesopores improving the accessibility of reactants and reducing diffusion resistance. This research demonstrates that the atmosphere-controlled pressurized steaming under a weakly alkaline calcination atmosphere is an effective strategy for preparing LaY zeolite with high stability and high activity, which is suitable for heavy oil cracking.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.5c03606\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c03606","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of Atmosphere-Controlled Pressurized Steaming on the Structure and Cracking Performance of As-Prepared LaY Zeolite
This study focuses on exploring the impact of atmosphere-controlled pressurized steaming (at 500 °C and 0.3 MPa) on the structure and catalytic performance of LaY zeolite. A weakly alkaline calcination atmosphere (pH 9.6) is introduced during the pressurized steaming process. This introduction significantly promotes the solid-state migration of La3+ ions from supercages to sodalite cages, resulting in an 18% increase in the I1/I2 ratio. It also enhances the B/L acid ratio by 45% and improves the hydrothermal stability of the zeolite with the crystallinity retention rate rising by 25%. The proposed process achieves a balanced dealumination-desilication mechanism. While maintaining the crystallinity of the zeolite, it generates uniform 3–4 nm intracrystalline mesopores. The mesopore volume accounts for an increasing proportion of the total pore volume, from 5% to 16%. Catalytic evaluation results show that, compared with the atmospheric calcination reference sample, the heavy oil conversion rate increases by 8.8% points, the gasoline yield rises by 8.0% points, and the coke yield is lower. This can be attributed to the mesopores improving the accessibility of reactants and reducing diffusion resistance. This research demonstrates that the atmosphere-controlled pressurized steaming under a weakly alkaline calcination atmosphere is an effective strategy for preparing LaY zeolite with high stability and high activity, which is suitable for heavy oil cracking.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.