H2O2蚀刻α-MnO2调控甲醛氧化途径:氧空位的作用

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Suhong Lu , Chengyu Xu , Shuo Wang , Yewei Chen , Zhongtao Jiang , Xinru Chen , Jurong Liu , Yuzhen Fang , Guilong Liu
{"title":"H2O2蚀刻α-MnO2调控甲醛氧化途径:氧空位的作用","authors":"Suhong Lu ,&nbsp;Chengyu Xu ,&nbsp;Shuo Wang ,&nbsp;Yewei Chen ,&nbsp;Zhongtao Jiang ,&nbsp;Xinru Chen ,&nbsp;Jurong Liu ,&nbsp;Yuzhen Fang ,&nbsp;Guilong Liu","doi":"10.1016/j.apsusc.2025.164828","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering oxygen vacancies in α-MnO<sub>2</sub> represents an effective strategy for generating active oxygen species to enhance catalytic performance in HCHO oxidation. In this study, rod-like α-MnO<sub>2</sub> was synthesized via an in situ redox reaction between potassium permanganate (KMnO<sub>4</sub>) and methanol, followed by modulation of surface oxygen vacancies through the adjustment of H<sub>2</sub>O<sub>2</sub> etching time. Etching duration critically governed catalytic enhancement, with α-MnO<sub>2</sub>-E-2 (2 h etching) exhibiting exceptional activity, robust stability and complete HCHO conversion at 60 °C. Characterization revealed oxygen vacancies on the catalyst surface could be effectively regulated by modifying the H<sub>2</sub>O<sub>2</sub> etching time. Significantly, α-MnO<sub>2</sub>-E-2 demonstrated the highest (Mn<sup>2+</sup> + Mn<sup>3+</sup>)/Mn<sub>total</sub> ratio and lowest average oxidation state (AOS), directly correlating with maximized oxygen vacancy formation. The introduction of oxygen vacancies facilitated superior oxygen mobility and activation, thereby accelerating HCHO oxidation. In situ DRIFTS analysis further confirmed that only formate species were observed as intermediates on α-MnO<sub>2</sub>-E-2, demonstrating that H<sub>2</sub>O<sub>2</sub> etching simplified the reaction pathway to HCHO → HCOO<sup>−</sup> → H<sub>2</sub>O + CO<sub>2</sub>.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"717 ","pages":"Article 164828"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating the formaldehyde oxidation pathway via H2O2 etching on α-MnO2: the role of oxygen vacancies\",\"authors\":\"Suhong Lu ,&nbsp;Chengyu Xu ,&nbsp;Shuo Wang ,&nbsp;Yewei Chen ,&nbsp;Zhongtao Jiang ,&nbsp;Xinru Chen ,&nbsp;Jurong Liu ,&nbsp;Yuzhen Fang ,&nbsp;Guilong Liu\",\"doi\":\"10.1016/j.apsusc.2025.164828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Engineering oxygen vacancies in α-MnO<sub>2</sub> represents an effective strategy for generating active oxygen species to enhance catalytic performance in HCHO oxidation. In this study, rod-like α-MnO<sub>2</sub> was synthesized via an in situ redox reaction between potassium permanganate (KMnO<sub>4</sub>) and methanol, followed by modulation of surface oxygen vacancies through the adjustment of H<sub>2</sub>O<sub>2</sub> etching time. Etching duration critically governed catalytic enhancement, with α-MnO<sub>2</sub>-E-2 (2 h etching) exhibiting exceptional activity, robust stability and complete HCHO conversion at 60 °C. Characterization revealed oxygen vacancies on the catalyst surface could be effectively regulated by modifying the H<sub>2</sub>O<sub>2</sub> etching time. Significantly, α-MnO<sub>2</sub>-E-2 demonstrated the highest (Mn<sup>2+</sup> + Mn<sup>3+</sup>)/Mn<sub>total</sub> ratio and lowest average oxidation state (AOS), directly correlating with maximized oxygen vacancy formation. The introduction of oxygen vacancies facilitated superior oxygen mobility and activation, thereby accelerating HCHO oxidation. In situ DRIFTS analysis further confirmed that only formate species were observed as intermediates on α-MnO<sub>2</sub>-E-2, demonstrating that H<sub>2</sub>O<sub>2</sub> etching simplified the reaction pathway to HCHO → HCOO<sup>−</sup> → H<sub>2</sub>O + CO<sub>2</sub>.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"717 \",\"pages\":\"Article 164828\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225025449\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225025449","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

α-MnO2的工程氧空位是生成活性氧以提高HCHO氧化催化性能的有效策略。在本研究中,通过高锰酸钾(KMnO4)与甲醇的原位氧化还原反应合成了棒状α-MnO2,然后通过调整H2O2蚀刻时间来调节表面氧空位。蚀刻时间是催化增强的关键因素,α-MnO2-E-2(2 h蚀刻)在60 °C下表现出优异的活性、稳定的稳定性和完全的HCHO转化。表征表明,通过改变H2O2蚀刻时间,可以有效地调节催化剂表面的氧空位。α-MnO2-E-2表现出最高的(Mn2+ + Mn3+)/Mntotal比率和最低的平均氧化态(AOS),这与最大的氧空位形成直接相关。氧空位的引入促进了氧的迁移和活化,从而加速了HCHO的氧化。原位漂移分析进一步证实,α-MnO2-E-2的中间产物只有甲酸盐,表明H2O2蚀刻将反应途径简化为HCHO→HCOO→H2O + CO2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating the formaldehyde oxidation pathway via H2O2 etching on α-MnO2: the role of oxygen vacancies

Modulating the formaldehyde oxidation pathway via H2O2 etching on α-MnO2: the role of oxygen vacancies

Modulating the formaldehyde oxidation pathway via H2O2 etching on α-MnO2: the role of oxygen vacancies
Engineering oxygen vacancies in α-MnO2 represents an effective strategy for generating active oxygen species to enhance catalytic performance in HCHO oxidation. In this study, rod-like α-MnO2 was synthesized via an in situ redox reaction between potassium permanganate (KMnO4) and methanol, followed by modulation of surface oxygen vacancies through the adjustment of H2O2 etching time. Etching duration critically governed catalytic enhancement, with α-MnO2-E-2 (2 h etching) exhibiting exceptional activity, robust stability and complete HCHO conversion at 60 °C. Characterization revealed oxygen vacancies on the catalyst surface could be effectively regulated by modifying the H2O2 etching time. Significantly, α-MnO2-E-2 demonstrated the highest (Mn2+ + Mn3+)/Mntotal ratio and lowest average oxidation state (AOS), directly correlating with maximized oxygen vacancy formation. The introduction of oxygen vacancies facilitated superior oxygen mobility and activation, thereby accelerating HCHO oxidation. In situ DRIFTS analysis further confirmed that only formate species were observed as intermediates on α-MnO2-E-2, demonstrating that H2O2 etching simplified the reaction pathway to HCHO → HCOO → H2O + CO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信