等离子体辅助N2和H2O在rGO-TiO2催化剂上合成氨:提高能量效率和揭示反应机制

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Shilin Song, , , Fei Wang, , , Xin Sun, , , Yi Chen, , , Jiawen Liu, , , Yanxing Shi, , , Ping Ning, , , Yixing Ma*, , and , Kai Li*, 
{"title":"等离子体辅助N2和H2O在rGO-TiO2催化剂上合成氨:提高能量效率和揭示反应机制","authors":"Shilin Song,&nbsp;, ,&nbsp;Fei Wang,&nbsp;, ,&nbsp;Xin Sun,&nbsp;, ,&nbsp;Yi Chen,&nbsp;, ,&nbsp;Jiawen Liu,&nbsp;, ,&nbsp;Yanxing Shi,&nbsp;, ,&nbsp;Ping Ning,&nbsp;, ,&nbsp;Yixing Ma*,&nbsp;, and ,&nbsp;Kai Li*,&nbsp;","doi":"10.1021/acscatal.5c06041","DOIUrl":null,"url":null,"abstract":"<p >The reduction of N<sub>2</sub> to ammonia (NH<sub>3</sub>) using H<sub>2</sub>O as a hydrogen source is a promising low-carbon alternative to the Haber–Bosch process, but the efficient dissociation of N<sub>2</sub> and H<sub>2</sub>O remains a challenge. Here, a reduced graphene oxide–titanium dioxide (rGO-TiO<sub>2</sub>) hybrid catalyst was developed to enhance H<sub>2</sub>O and N<sub>2</sub> dissociation under dielectric barrier discharge (DBD) plasma, facilitating plasma-assisted ammonia synthesis. The 5-rGO-TiO<sub>2</sub> catalyst achieved an NH<sub>3</sub> formation rate of 4196.62 μmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> and a high energy efficiency of 1317.77 mg kWh<sup>–1</sup>. Mechanistic investigations using optical emission spectroscopy (OES), in situ Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed the formation of reactive nitrogen species, NH<i><sub>x</sub></i> intermediates, and NH<sub>3</sub>, demonstrating the synergistic role of rGO in electron transfer and reactant dissociation. Density functional theory (DFT) calculations further revealed that rGO significantly lowers the energy barriers for N<sub>2</sub> and H<sub>2</sub>O dissociation, improving the ammonia synthesis efficiency. Overall, the integration of rGO-TiO<sub>2</sub> with plasma catalysis effectively enhances reactant activation and catalytic performance, offering insights into the design of advanced catalysts for low-energy ammonia production.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 20","pages":"17603–17613"},"PeriodicalIF":13.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Assisted Ammonia Synthesis from N2 and H2O over rGO-TiO2 Catalysts: Enhancing Energy Efficiency and Unraveling Reaction Mechanisms\",\"authors\":\"Shilin Song,&nbsp;, ,&nbsp;Fei Wang,&nbsp;, ,&nbsp;Xin Sun,&nbsp;, ,&nbsp;Yi Chen,&nbsp;, ,&nbsp;Jiawen Liu,&nbsp;, ,&nbsp;Yanxing Shi,&nbsp;, ,&nbsp;Ping Ning,&nbsp;, ,&nbsp;Yixing Ma*,&nbsp;, and ,&nbsp;Kai Li*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c06041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The reduction of N<sub>2</sub> to ammonia (NH<sub>3</sub>) using H<sub>2</sub>O as a hydrogen source is a promising low-carbon alternative to the Haber–Bosch process, but the efficient dissociation of N<sub>2</sub> and H<sub>2</sub>O remains a challenge. Here, a reduced graphene oxide–titanium dioxide (rGO-TiO<sub>2</sub>) hybrid catalyst was developed to enhance H<sub>2</sub>O and N<sub>2</sub> dissociation under dielectric barrier discharge (DBD) plasma, facilitating plasma-assisted ammonia synthesis. The 5-rGO-TiO<sub>2</sub> catalyst achieved an NH<sub>3</sub> formation rate of 4196.62 μmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> and a high energy efficiency of 1317.77 mg kWh<sup>–1</sup>. Mechanistic investigations using optical emission spectroscopy (OES), in situ Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed the formation of reactive nitrogen species, NH<i><sub>x</sub></i> intermediates, and NH<sub>3</sub>, demonstrating the synergistic role of rGO in electron transfer and reactant dissociation. Density functional theory (DFT) calculations further revealed that rGO significantly lowers the energy barriers for N<sub>2</sub> and H<sub>2</sub>O dissociation, improving the ammonia synthesis efficiency. Overall, the integration of rGO-TiO<sub>2</sub> with plasma catalysis effectively enhances reactant activation and catalytic performance, offering insights into the design of advanced catalysts for low-energy ammonia production.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 20\",\"pages\":\"17603–17613\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c06041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c06041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用H2O作为氢源将N2还原为氨(NH3)是一种有前途的低碳替代Haber-Bosch工艺,但N2和H2O的有效解离仍然是一个挑战。本研究开发了一种还原氧化石墨烯-二氧化钛(rGO-TiO2)杂化催化剂,以增强介质阻挡放电(DBD)等离子体下H2O和N2的解离,促进等离子体辅助氨合成。5-rGO-TiO2催化剂的NH3生成速率为4196.62 μmol gcat-1 h-1,能量效率为1317.77 mg kWh-1。利用光学发射光谱(OES)、原位傅立叶变换红外光谱(FTIR)和x射线光电子能谱(XPS)进行的机理研究证实了活性氮、NHx中间体和NH3的形成,证明了还原氧化石墨烯在电子转移和反应物解离中的协同作用。密度泛函理论(DFT)计算进一步表明,还原氧化石墨烯显著降低了N2和H2O解离的能垒,提高了氨合成效率。总的来说,rGO-TiO2与等离子体催化的整合有效地提高了反应物的活性和催化性能,为设计低能耗合成氨的先进催化剂提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasma-Assisted Ammonia Synthesis from N2 and H2O over rGO-TiO2 Catalysts: Enhancing Energy Efficiency and Unraveling Reaction Mechanisms

Plasma-Assisted Ammonia Synthesis from N2 and H2O over rGO-TiO2 Catalysts: Enhancing Energy Efficiency and Unraveling Reaction Mechanisms

Plasma-Assisted Ammonia Synthesis from N2 and H2O over rGO-TiO2 Catalysts: Enhancing Energy Efficiency and Unraveling Reaction Mechanisms

The reduction of N2 to ammonia (NH3) using H2O as a hydrogen source is a promising low-carbon alternative to the Haber–Bosch process, but the efficient dissociation of N2 and H2O remains a challenge. Here, a reduced graphene oxide–titanium dioxide (rGO-TiO2) hybrid catalyst was developed to enhance H2O and N2 dissociation under dielectric barrier discharge (DBD) plasma, facilitating plasma-assisted ammonia synthesis. The 5-rGO-TiO2 catalyst achieved an NH3 formation rate of 4196.62 μmol gcat–1 h–1 and a high energy efficiency of 1317.77 mg kWh–1. Mechanistic investigations using optical emission spectroscopy (OES), in situ Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed the formation of reactive nitrogen species, NHx intermediates, and NH3, demonstrating the synergistic role of rGO in electron transfer and reactant dissociation. Density functional theory (DFT) calculations further revealed that rGO significantly lowers the energy barriers for N2 and H2O dissociation, improving the ammonia synthesis efficiency. Overall, the integration of rGO-TiO2 with plasma catalysis effectively enhances reactant activation and catalytic performance, offering insights into the design of advanced catalysts for low-energy ammonia production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信