三明治结构的铜泡沫与远程气泡传输,使高效的水分裂和纯粹的气泡收集。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-09 DOI:10.1002/smll.202507787
Jinyue Xiao,Zhanpeng Xu,Shuhao Wang,Xin Zhang,Shifeng Zai,Zhecun Wang
{"title":"三明治结构的铜泡沫与远程气泡传输,使高效的水分裂和纯粹的气泡收集。","authors":"Jinyue Xiao,Zhanpeng Xu,Shuhao Wang,Xin Zhang,Shifeng Zai,Zhecun Wang","doi":"10.1002/smll.202507787","DOIUrl":null,"url":null,"abstract":"Achieving long-range bubble transport in liquid is crucial to enable high-efficiency water splitting and bubble harvesting. This study presents a simple and effective method for fabricating a unique sandwich-structured material with aerophobic/aerophilic/aerophobic symmetric wettability. The design of this structure ensures that bubbles move unidirectionally from the aerophobic regions on either side into the central aerophilic channel, while the reverse passage through the copper foam is prevented. Furthermore, experimental results demonstrate that the unique structure enables versatile underwater bubble transport behaviors, including wave-like and spiral paths, thereby facilitating long-range, efficient directional movement. This long-range, spontaneous, and directional pumpless transport of underwater bubbles allows for efficient water splitting. Combining experimental results with theoretical calculations, the unique structure effectively mitigates H2 (hydrogen) bubble accumulation on the electrode surface, thereby promoting efficient mass transfer during electrolysis. Moreover, its superior bubble transport capability enables efficient bubble collection, even in complex environments, making it highly suitable for gas-related applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"1 1","pages":"e07787"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sandwich-Structured Copper Foam with Long-Range Bubble Transport Enables Efficient Water Splitting and Pure Bubble Harvesting.\",\"authors\":\"Jinyue Xiao,Zhanpeng Xu,Shuhao Wang,Xin Zhang,Shifeng Zai,Zhecun Wang\",\"doi\":\"10.1002/smll.202507787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving long-range bubble transport in liquid is crucial to enable high-efficiency water splitting and bubble harvesting. This study presents a simple and effective method for fabricating a unique sandwich-structured material with aerophobic/aerophilic/aerophobic symmetric wettability. The design of this structure ensures that bubbles move unidirectionally from the aerophobic regions on either side into the central aerophilic channel, while the reverse passage through the copper foam is prevented. Furthermore, experimental results demonstrate that the unique structure enables versatile underwater bubble transport behaviors, including wave-like and spiral paths, thereby facilitating long-range, efficient directional movement. This long-range, spontaneous, and directional pumpless transport of underwater bubbles allows for efficient water splitting. Combining experimental results with theoretical calculations, the unique structure effectively mitigates H2 (hydrogen) bubble accumulation on the electrode surface, thereby promoting efficient mass transfer during electrolysis. Moreover, its superior bubble transport capability enables efficient bubble collection, even in complex environments, making it highly suitable for gas-related applications.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"1 1\",\"pages\":\"e07787\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202507787\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202507787","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现长距离的气泡在液体中的传输是实现高效的水分解和气泡收集的关键。本研究提出了一种简单有效的方法来制造一种独特的具有疏氧/亲氧/疏氧对称润湿性的三明治结构材料。这种结构的设计确保气泡从两侧的厌氧区域单向移动到中央的亲氧通道,同时防止反向通过铜泡沫。此外,实验结果表明,独特的结构可以实现多种水下气泡传输行为,包括波浪和螺旋路径,从而促进远距离、高效的定向运动。这种长距离的、自发的、定向的、无泵的水下气泡传输可以有效地分解水。结合实验结果和理论计算,这种独特的结构有效地减轻了电极表面H2(氢)气泡的积聚,从而促进了电解过程中高效的传质。此外,即使在复杂的环境中,其优越的气泡传输能力也能实现高效的气泡收集,使其非常适合与气体相关的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sandwich-Structured Copper Foam with Long-Range Bubble Transport Enables Efficient Water Splitting and Pure Bubble Harvesting.
Achieving long-range bubble transport in liquid is crucial to enable high-efficiency water splitting and bubble harvesting. This study presents a simple and effective method for fabricating a unique sandwich-structured material with aerophobic/aerophilic/aerophobic symmetric wettability. The design of this structure ensures that bubbles move unidirectionally from the aerophobic regions on either side into the central aerophilic channel, while the reverse passage through the copper foam is prevented. Furthermore, experimental results demonstrate that the unique structure enables versatile underwater bubble transport behaviors, including wave-like and spiral paths, thereby facilitating long-range, efficient directional movement. This long-range, spontaneous, and directional pumpless transport of underwater bubbles allows for efficient water splitting. Combining experimental results with theoretical calculations, the unique structure effectively mitigates H2 (hydrogen) bubble accumulation on the electrode surface, thereby promoting efficient mass transfer during electrolysis. Moreover, its superior bubble transport capability enables efficient bubble collection, even in complex environments, making it highly suitable for gas-related applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信