二维拓扑超导的非共线路径。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-09 DOI:10.1021/acsnano.5c07565
Reiner Brüning*, , , Jasmin Bedow, , , Roberto Lo Conte, , , Kirsten von Bergmann*, , , Dirk K. Morr, , and , Roland Wiesendanger, 
{"title":"二维拓扑超导的非共线路径。","authors":"Reiner Brüning*,&nbsp;, ,&nbsp;Jasmin Bedow,&nbsp;, ,&nbsp;Roberto Lo Conte,&nbsp;, ,&nbsp;Kirsten von Bergmann*,&nbsp;, ,&nbsp;Dirk K. Morr,&nbsp;, and ,&nbsp;Roland Wiesendanger,&nbsp;","doi":"10.1021/acsnano.5c07565","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional magnet-superconductor hybrids (2D-MSH) are promising candidates to realize devices for topology-based quantum technologies and superconducting spintronics. So far, studies have focused on 2D-MSH systems with collinear ferro- or antiferromagnetic layers. Here, we present the discovery of topological superconductivity in a noncollinear MSH system where a magnetic spiral is realized in an Fe monolayer proximity coupled to a superconducting Ta(110) substrate. By combining low-temperature spin-polarized scanning tunneling spectroscopy with an in-depth theoretical study, we can conclude that the system is in a topological nodal-point superconducting phase with low-energy edge modes. Furthermore, we reveal that for this noncollinear spin texture, these edge modes exhibit a magnetization direction-dependent dispersion. This means that a spatial shift of the magnetic spiral could be used to reverse the chirality of an edge mode in future MSH-based devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 41","pages":"36215–36222"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07565","citationCount":"0","resultStr":"{\"title\":\"The Noncollinear Path to Two-Dimensional Topological Superconductivity\",\"authors\":\"Reiner Brüning*,&nbsp;, ,&nbsp;Jasmin Bedow,&nbsp;, ,&nbsp;Roberto Lo Conte,&nbsp;, ,&nbsp;Kirsten von Bergmann*,&nbsp;, ,&nbsp;Dirk K. Morr,&nbsp;, and ,&nbsp;Roland Wiesendanger,&nbsp;\",\"doi\":\"10.1021/acsnano.5c07565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional magnet-superconductor hybrids (2D-MSH) are promising candidates to realize devices for topology-based quantum technologies and superconducting spintronics. So far, studies have focused on 2D-MSH systems with collinear ferro- or antiferromagnetic layers. Here, we present the discovery of topological superconductivity in a noncollinear MSH system where a magnetic spiral is realized in an Fe monolayer proximity coupled to a superconducting Ta(110) substrate. By combining low-temperature spin-polarized scanning tunneling spectroscopy with an in-depth theoretical study, we can conclude that the system is in a topological nodal-point superconducting phase with low-energy edge modes. Furthermore, we reveal that for this noncollinear spin texture, these edge modes exhibit a magnetization direction-dependent dispersion. This means that a spatial shift of the magnetic spiral could be used to reverse the chirality of an edge mode in future MSH-based devices.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 41\",\"pages\":\"36215–36222\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07565\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c07565\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07565","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维磁体-超导体杂化体(2D-MSH)是实现拓扑量子技术和超导自旋电子学器件的有希望的候选材料。到目前为止,研究主要集中在具有共线铁磁层或反铁磁层的2D-MSH系统上。在这里,我们提出了在非共线MSH系统中拓扑超导性的发现,其中磁螺旋是在铁单层接近耦合到超导Ta(110)衬底中实现的。通过低温自旋极化扫描隧道光谱与深入的理论研究相结合,我们可以得出系统处于具有低能边缘模式的拓扑节点超导相。此外,我们发现对于这种非共线自旋织构,这些边缘模式表现出磁化方向相关的色散。这意味着在未来基于msh的器件中,磁螺旋的空间位移可以用来逆转边缘模式的手性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Noncollinear Path to Two-Dimensional Topological Superconductivity

Two-dimensional magnet-superconductor hybrids (2D-MSH) are promising candidates to realize devices for topology-based quantum technologies and superconducting spintronics. So far, studies have focused on 2D-MSH systems with collinear ferro- or antiferromagnetic layers. Here, we present the discovery of topological superconductivity in a noncollinear MSH system where a magnetic spiral is realized in an Fe monolayer proximity coupled to a superconducting Ta(110) substrate. By combining low-temperature spin-polarized scanning tunneling spectroscopy with an in-depth theoretical study, we can conclude that the system is in a topological nodal-point superconducting phase with low-energy edge modes. Furthermore, we reveal that for this noncollinear spin texture, these edge modes exhibit a magnetization direction-dependent dispersion. This means that a spatial shift of the magnetic spiral could be used to reverse the chirality of an edge mode in future MSH-based devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信