CRISPR-Cas12a - REC2-Nuc相互作用驱动靶链切割并约束反式切割

IF 13.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anthony Newman, Aakash Saha, Lora Starrs, Pablo R Arantes, Giulia Palermo, Gaetan Burgio
{"title":"CRISPR-Cas12a - REC2-Nuc相互作用驱动靶链切割并约束反式切割","authors":"Anthony Newman, Aakash Saha, Lora Starrs, Pablo R Arantes, Giulia Palermo, Gaetan Burgio","doi":"10.1093/nar/gkaf988","DOIUrl":null,"url":null,"abstract":"CRISPR-Cas12a mediates RNA-guided cleavage of double-stranded DNA in cis, after which it remains catalytically active and non-specifically cleaves single-stranded DNA in trans. Native host defence by Cas12a employs cis cleavage, which can be repurposed for the genome editing of other organisms, and trans cleavage can be used for in vitro DNA detection. Cas12a orthologues have high structural similarity and a conserved mechanism of DNA cleavage, yet highly different efficacies when applied for genome editing or DNA detection. By comparing three well-characterized Cas12a orthologues (FnCas12a, LbCas12a, and AsCas12a), we sought to determine what drives their different cis and trans cleavage and how this relates to their applied function. We integrated in vitro DNA cleavage kinetics with molecular dynamics simulations, plasmid interference in Escherichia coli, and genome editing in human cell lines. We report large differences in cis cleavage kinetics between orthologues, which may be driven by dynamic REC2-Nuc interactions. We generated and tested REC2 and Nuc mutants, including a hitherto unstudied ‘Nuc-loop’, integrity of which is critical for the function of Cas12. In total, our in vitro, in vivo, and in silico survey of Cas12a orthologues highlights key properties that drive their function in biotechnology applications.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"60 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR-Cas12a REC2–Nuc interactions drive target-strand cleavage and constrain trans cleavage\",\"authors\":\"Anthony Newman, Aakash Saha, Lora Starrs, Pablo R Arantes, Giulia Palermo, Gaetan Burgio\",\"doi\":\"10.1093/nar/gkaf988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRISPR-Cas12a mediates RNA-guided cleavage of double-stranded DNA in cis, after which it remains catalytically active and non-specifically cleaves single-stranded DNA in trans. Native host defence by Cas12a employs cis cleavage, which can be repurposed for the genome editing of other organisms, and trans cleavage can be used for in vitro DNA detection. Cas12a orthologues have high structural similarity and a conserved mechanism of DNA cleavage, yet highly different efficacies when applied for genome editing or DNA detection. By comparing three well-characterized Cas12a orthologues (FnCas12a, LbCas12a, and AsCas12a), we sought to determine what drives their different cis and trans cleavage and how this relates to their applied function. We integrated in vitro DNA cleavage kinetics with molecular dynamics simulations, plasmid interference in Escherichia coli, and genome editing in human cell lines. We report large differences in cis cleavage kinetics between orthologues, which may be driven by dynamic REC2-Nuc interactions. We generated and tested REC2 and Nuc mutants, including a hitherto unstudied ‘Nuc-loop’, integrity of which is critical for the function of Cas12. In total, our in vitro, in vivo, and in silico survey of Cas12a orthologues highlights key properties that drive their function in biotechnology applications.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf988\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf988","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

CRISPR-Cas12a介导rna引导的顺式双链DNA切割,之后保持催化活性,非特异性切割反式单链DNA。Cas12a的原生宿主防御采用顺式切割,可用于其他生物的基因组编辑,反式切割可用于体外DNA检测。Cas12a同源物具有高度的结构相似性和保守的DNA切割机制,但应用于基因组编辑或DNA检测时的功效差异很大。通过比较三种已被充分表征的Cas12a同源物(FnCas12a、LbCas12a和AsCas12a),我们试图确定是什么驱动了它们不同的顺式和反式切割,以及这与它们的应用功能有何关系。我们将体外DNA切割动力学与分子动力学模拟、大肠杆菌质粒干扰和人类细胞系基因组编辑结合起来。我们报告了同源物之间顺式裂解动力学的巨大差异,这可能是由动态REC2-Nuc相互作用驱动的。我们生成并测试了REC2和Nuc突变体,包括迄今未被研究的“Nuc-loop”,其完整性对Cas12的功能至关重要。总的来说,我们对Cas12a同源物的体外、体内和计算机调查突出了推动其在生物技术应用中的功能的关键特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRISPR-Cas12a REC2–Nuc interactions drive target-strand cleavage and constrain trans cleavage
CRISPR-Cas12a mediates RNA-guided cleavage of double-stranded DNA in cis, after which it remains catalytically active and non-specifically cleaves single-stranded DNA in trans. Native host defence by Cas12a employs cis cleavage, which can be repurposed for the genome editing of other organisms, and trans cleavage can be used for in vitro DNA detection. Cas12a orthologues have high structural similarity and a conserved mechanism of DNA cleavage, yet highly different efficacies when applied for genome editing or DNA detection. By comparing three well-characterized Cas12a orthologues (FnCas12a, LbCas12a, and AsCas12a), we sought to determine what drives their different cis and trans cleavage and how this relates to their applied function. We integrated in vitro DNA cleavage kinetics with molecular dynamics simulations, plasmid interference in Escherichia coli, and genome editing in human cell lines. We report large differences in cis cleavage kinetics between orthologues, which may be driven by dynamic REC2-Nuc interactions. We generated and tested REC2 and Nuc mutants, including a hitherto unstudied ‘Nuc-loop’, integrity of which is critical for the function of Cas12. In total, our in vitro, in vivo, and in silico survey of Cas12a orthologues highlights key properties that drive their function in biotechnology applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信