层状富镍NCMA阴极的优势多功能表面改性使锂金属电池具有优越的可循环性和界面性能。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tadesu Hailu Mengesha, , , Juliya Jeyakumar, , , Manojkumar Seenivasan, , , Yola Bertilsya Hendri, , , Quoc-Thai Pham, , , Chorng-Shyan Chern, , , Gunther Brunklaus, , , Martin Winter, , , Bing Joe Hwang, , , Chun-Chen Yang*, , and , Yi-Shiuan Wu*, 
{"title":"层状富镍NCMA阴极的优势多功能表面改性使锂金属电池具有优越的可循环性和界面性能。","authors":"Tadesu Hailu Mengesha,&nbsp;, ,&nbsp;Juliya Jeyakumar,&nbsp;, ,&nbsp;Manojkumar Seenivasan,&nbsp;, ,&nbsp;Yola Bertilsya Hendri,&nbsp;, ,&nbsp;Quoc-Thai Pham,&nbsp;, ,&nbsp;Chorng-Shyan Chern,&nbsp;, ,&nbsp;Gunther Brunklaus,&nbsp;, ,&nbsp;Martin Winter,&nbsp;, ,&nbsp;Bing Joe Hwang,&nbsp;, ,&nbsp;Chun-Chen Yang*,&nbsp;, and ,&nbsp;Yi-Shiuan Wu*,&nbsp;","doi":"10.1021/acsami.5c15653","DOIUrl":null,"url":null,"abstract":"<p >Transition metal oxides (TMOs) rich in nickel (Ni) are significantly advancing the field of energy storage, particularly when combined with lithium metal anodes (LMAs). While the instability of Ni-rich cathodes poses challenges for large-scale commercialization, we propose a compelling solution: modifying layered oxide materials with multifunctional coatings. In our research, we enhanced Ni-rich Li(Ni<sub>0.9</sub>Co<sub>0.04</sub>Mn<sub>0.03</sub>Al<sub>0.03</sub>)O<sub>2</sub> (LNCMA90) particles by applying a lithiated Nafion polymer (LNf). This innovative coating stabilizes the electrolyte/electrode interface and forms a hybrid cathode electrolyte interphase (CEI) layer, improving Li<sup>+</sup> ion transport and mechanical stability of the LNCMA90 material. Advanced characterization techniques, such as transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), confirmed the establishment of the stable CEI layer on the LNf-LNCMA90 electrode. Notably, the LNf-LNCMA90//Li cell retained 78.42% of its initial discharge capacity after 500 cycles at 1C/1C cycling, a substantial improvement over the 64.48% retention observed in the uncoated LNCMA90 (pr-LNCMA90)//Li cell. Furthermore, it maintained 75.22% of its capacity after 300 cycles at 0.5C/5C. In situ calorimetric studies demonstrated that the LNf-LNCMA90 cathode generated considerably less total heat, at 38 and 41 J g<sup>–1</sup>, during charging and discharging at 1C/1C and 30 °C compared to its uncoated counterpart, which produced nearly 1.5 times more heat. In summary, the exceptional performance of the LNf-LNCMA90//Li cell can be attributed to the robust hybrid CEI layer that stabilizes the Ni-rich oxide structure, especially for Ni contents exceeding 90%. This advancement holds great promise for the future of lithium metal batteries (LMBs) and meets the increasing demands of the energy storage industry.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 42","pages":"58956–58972"},"PeriodicalIF":8.2000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advantageous Multifunctional Surface Modification of Layered Nickel-Rich NCMA Cathodes Enables Superior Cyclability and Interfacial Properties in Lithium Metal Batteries\",\"authors\":\"Tadesu Hailu Mengesha,&nbsp;, ,&nbsp;Juliya Jeyakumar,&nbsp;, ,&nbsp;Manojkumar Seenivasan,&nbsp;, ,&nbsp;Yola Bertilsya Hendri,&nbsp;, ,&nbsp;Quoc-Thai Pham,&nbsp;, ,&nbsp;Chorng-Shyan Chern,&nbsp;, ,&nbsp;Gunther Brunklaus,&nbsp;, ,&nbsp;Martin Winter,&nbsp;, ,&nbsp;Bing Joe Hwang,&nbsp;, ,&nbsp;Chun-Chen Yang*,&nbsp;, and ,&nbsp;Yi-Shiuan Wu*,&nbsp;\",\"doi\":\"10.1021/acsami.5c15653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition metal oxides (TMOs) rich in nickel (Ni) are significantly advancing the field of energy storage, particularly when combined with lithium metal anodes (LMAs). While the instability of Ni-rich cathodes poses challenges for large-scale commercialization, we propose a compelling solution: modifying layered oxide materials with multifunctional coatings. In our research, we enhanced Ni-rich Li(Ni<sub>0.9</sub>Co<sub>0.04</sub>Mn<sub>0.03</sub>Al<sub>0.03</sub>)O<sub>2</sub> (LNCMA90) particles by applying a lithiated Nafion polymer (LNf). This innovative coating stabilizes the electrolyte/electrode interface and forms a hybrid cathode electrolyte interphase (CEI) layer, improving Li<sup>+</sup> ion transport and mechanical stability of the LNCMA90 material. Advanced characterization techniques, such as transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), confirmed the establishment of the stable CEI layer on the LNf-LNCMA90 electrode. Notably, the LNf-LNCMA90//Li cell retained 78.42% of its initial discharge capacity after 500 cycles at 1C/1C cycling, a substantial improvement over the 64.48% retention observed in the uncoated LNCMA90 (pr-LNCMA90)//Li cell. Furthermore, it maintained 75.22% of its capacity after 300 cycles at 0.5C/5C. In situ calorimetric studies demonstrated that the LNf-LNCMA90 cathode generated considerably less total heat, at 38 and 41 J g<sup>–1</sup>, during charging and discharging at 1C/1C and 30 °C compared to its uncoated counterpart, which produced nearly 1.5 times more heat. In summary, the exceptional performance of the LNf-LNCMA90//Li cell can be attributed to the robust hybrid CEI layer that stabilizes the Ni-rich oxide structure, especially for Ni contents exceeding 90%. This advancement holds great promise for the future of lithium metal batteries (LMBs) and meets the increasing demands of the energy storage industry.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 42\",\"pages\":\"58956–58972\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c15653\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c15653","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富含镍(Ni)的过渡金属氧化物(TMOs)与锂金属阳极(LMAs)的结合,极大地推动了储能领域的发展。虽然富镍阴极的不稳定性对大规模商业化提出了挑战,但我们提出了一个令人信服的解决方案:用多功能涂层修饰层状氧化物材料。在我们的研究中,我们利用锂化的Nafion聚合物(LNf)增强了富镍Li(Ni0.9Co0.04Mn0.03Al0.03)O2 (LNCMA90)颗粒。这种创新的涂层稳定了电解质/电极界面,形成了混合阴极电解质界面(CEI)层,改善了LNCMA90材料的Li+离子传输和机械稳定性。先进的表征技术,如透射电子显微镜(TEM)和飞行时间二次离子质谱(ToF-SIMS),证实了在LNf-LNCMA90电极上建立了稳定的CEI层。值得注意的是,在1C/1C循环500次后,LNf-LNCMA90//锂电池保持了78.42%的初始放电容量,比未涂覆的LNCMA90 (pr-LNCMA90)//锂电池的64.48%的保留率有了很大的提高。此外,在0.5C/5C下循环300次后,它的容量保持在75.22%。原位量热研究表明,在1C/1C和30°C的充放电过程中,LNf-LNCMA90阴极产生的总热量明显低于未涂覆的阴极,分别为38和41 J g-1,而未涂覆的阴极产生的热量几乎是其1.5倍。综上所述,LNf-LNCMA90//锂电池的优异性能可归因于坚固的杂化CEI层,该层稳定了富镍氧化物结构,特别是当Ni含量超过90%时。这一进展为锂金属电池(lmb)的未来带来了巨大的希望,并满足了能源存储行业日益增长的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advantageous Multifunctional Surface Modification of Layered Nickel-Rich NCMA Cathodes Enables Superior Cyclability and Interfacial Properties in Lithium Metal Batteries

Transition metal oxides (TMOs) rich in nickel (Ni) are significantly advancing the field of energy storage, particularly when combined with lithium metal anodes (LMAs). While the instability of Ni-rich cathodes poses challenges for large-scale commercialization, we propose a compelling solution: modifying layered oxide materials with multifunctional coatings. In our research, we enhanced Ni-rich Li(Ni0.9Co0.04Mn0.03Al0.03)O2 (LNCMA90) particles by applying a lithiated Nafion polymer (LNf). This innovative coating stabilizes the electrolyte/electrode interface and forms a hybrid cathode electrolyte interphase (CEI) layer, improving Li+ ion transport and mechanical stability of the LNCMA90 material. Advanced characterization techniques, such as transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), confirmed the establishment of the stable CEI layer on the LNf-LNCMA90 electrode. Notably, the LNf-LNCMA90//Li cell retained 78.42% of its initial discharge capacity after 500 cycles at 1C/1C cycling, a substantial improvement over the 64.48% retention observed in the uncoated LNCMA90 (pr-LNCMA90)//Li cell. Furthermore, it maintained 75.22% of its capacity after 300 cycles at 0.5C/5C. In situ calorimetric studies demonstrated that the LNf-LNCMA90 cathode generated considerably less total heat, at 38 and 41 J g–1, during charging and discharging at 1C/1C and 30 °C compared to its uncoated counterpart, which produced nearly 1.5 times more heat. In summary, the exceptional performance of the LNf-LNCMA90//Li cell can be attributed to the robust hybrid CEI layer that stabilizes the Ni-rich oxide structure, especially for Ni contents exceeding 90%. This advancement holds great promise for the future of lithium metal batteries (LMBs) and meets the increasing demands of the energy storage industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信