{"title":"双阴离子主导的电解质设计操纵配位和富硼界面,用于自愈合和长寿命镁金属阳极","authors":"Lu Zhang, Yuping Liu, Xiaolei Wang, Zhihong Cui, Jinming Pan, Jingfeng Wang, Guangsheng Huang, Dingfei Zhang, Chaohe Xu","doi":"10.1002/adfm.202520292","DOIUrl":null,"url":null,"abstract":"Practical magnesium electrolyte options are limited by magnesium salt solubility in organic solvents and compatibility with metallic magnesium anode/cathode materials. Herein, a dual‐anion electrolyte system (YBTFC) consisting of 0.2 <jats:sc>m</jats:sc> magnesium chloride (MgCl<jats:sub>2</jats:sub>) and 0.4 <jats:sc>m</jats:sc> dibutylboron trifluoromethanesulfonate (TFBA) in 1,2‐Dimethoxyethane (DME) solvent to regulate the coordination chemistry and the interface structure is proposed. As an anion receptor, TFBA facilitates Lewis‐acid‐base reactions that foster the dissociation of insoluble MgCl<jats:sub>2</jats:sub> and the formation of bi‐anions. The CF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> modulates the solvation sheath to reduce DME coordination strength and penetrates Mg passive films, enabling reversible plating. Concurrently, the bulky B(CF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub>)<jats:sub>4</jats:sub><jats:sup>−</jats:sup> preferentially decomposes into boron‐rich interphases, enhancing Mg<jats:sup>2</jats:sup>⁺ transport kinetics while suppressing contact ion pair formation to extend operational temperature range. This combination of exceptional durability, low‐temperature operation (−30 °C), and inherent interfacial self‐healing is rarely observed in boron‐based electrolytes. Critically, the boron‐rich nature of YBTFC electrolyte facilitates B‐O interphase formation on both electrode interfaces. Accordingly, the Mg|YBTFC|Mo<jats:sub>6</jats:sub>S<jats:sub>8</jats:sub> cell achieves a discharge specific capacity of 50 mAh g<jats:sup>−1</jats:sup> and outstanding cycling stability of 4500 cycles at a 3C rate. Overall, tailoring Mg<jats:sup>2+</jats:sup> coordination chemistry and constructing a boron‐rich interphase via a dual‐anion electrolyte provides a viable approach for realizing long‐life, high‐rate‐performance magnesium batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"50 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual‐Anion‐Dominated Electrolyte Design Manipulating Coordination and Boron‐Rich Interphase for Self‐Healing and Long‐Life Mg Metal Anode\",\"authors\":\"Lu Zhang, Yuping Liu, Xiaolei Wang, Zhihong Cui, Jinming Pan, Jingfeng Wang, Guangsheng Huang, Dingfei Zhang, Chaohe Xu\",\"doi\":\"10.1002/adfm.202520292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practical magnesium electrolyte options are limited by magnesium salt solubility in organic solvents and compatibility with metallic magnesium anode/cathode materials. Herein, a dual‐anion electrolyte system (YBTFC) consisting of 0.2 <jats:sc>m</jats:sc> magnesium chloride (MgCl<jats:sub>2</jats:sub>) and 0.4 <jats:sc>m</jats:sc> dibutylboron trifluoromethanesulfonate (TFBA) in 1,2‐Dimethoxyethane (DME) solvent to regulate the coordination chemistry and the interface structure is proposed. As an anion receptor, TFBA facilitates Lewis‐acid‐base reactions that foster the dissociation of insoluble MgCl<jats:sub>2</jats:sub> and the formation of bi‐anions. The CF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> modulates the solvation sheath to reduce DME coordination strength and penetrates Mg passive films, enabling reversible plating. Concurrently, the bulky B(CF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub>)<jats:sub>4</jats:sub><jats:sup>−</jats:sup> preferentially decomposes into boron‐rich interphases, enhancing Mg<jats:sup>2</jats:sup>⁺ transport kinetics while suppressing contact ion pair formation to extend operational temperature range. This combination of exceptional durability, low‐temperature operation (−30 °C), and inherent interfacial self‐healing is rarely observed in boron‐based electrolytes. Critically, the boron‐rich nature of YBTFC electrolyte facilitates B‐O interphase formation on both electrode interfaces. Accordingly, the Mg|YBTFC|Mo<jats:sub>6</jats:sub>S<jats:sub>8</jats:sub> cell achieves a discharge specific capacity of 50 mAh g<jats:sup>−1</jats:sup> and outstanding cycling stability of 4500 cycles at a 3C rate. Overall, tailoring Mg<jats:sup>2+</jats:sup> coordination chemistry and constructing a boron‐rich interphase via a dual‐anion electrolyte provides a viable approach for realizing long‐life, high‐rate‐performance magnesium batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202520292\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202520292","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
实用的镁电解质选择受到镁盐在有机溶剂中的溶解度和与金属镁阳极/阴极材料的兼容性的限制。本文提出了一种由0.2 m氯化镁(MgCl2)和0.4 m二丁基硼三氟甲烷磺酸盐(TFBA)在1,2 -二甲氧基乙烷(DME)溶剂中组成的双阴离子电解质体系(YBTFC)来调节配位化学和界面结构。作为阴离子受体,TFBA促进Lewis酸碱反应,促进不溶性MgCl2的解离和双阴离子的形成。CF3SO3−调节溶剂化鞘层,降低二甲醚配位强度,穿透Mg钝化膜,实现可逆电镀。同时,体积较大的B(CF3SO3)4−优先分解成富硼界面,增强了Mg2 +的传输动力学,同时抑制了接触离子对的形成,延长了操作温度范围。这种优异的耐久性、低温操作(- 30°C)和固有界面自愈的组合在硼基电解质中很少观察到。关键是,YBTFC电解质的富硼性质促进了两个电极界面上B - O界面相的形成。因此,Mg|YBTFC|Mo6S8电池实现了50 mAh g - 1的放电比容量和出色的循环稳定性,在3C速率下循环4500次。总之,调整Mg2+配位化学和通过双阴离子电解质构建富硼间相为实现长寿命、高倍率性能的镁电池提供了可行的方法。
Dual‐Anion‐Dominated Electrolyte Design Manipulating Coordination and Boron‐Rich Interphase for Self‐Healing and Long‐Life Mg Metal Anode
Practical magnesium electrolyte options are limited by magnesium salt solubility in organic solvents and compatibility with metallic magnesium anode/cathode materials. Herein, a dual‐anion electrolyte system (YBTFC) consisting of 0.2 m magnesium chloride (MgCl2) and 0.4 m dibutylboron trifluoromethanesulfonate (TFBA) in 1,2‐Dimethoxyethane (DME) solvent to regulate the coordination chemistry and the interface structure is proposed. As an anion receptor, TFBA facilitates Lewis‐acid‐base reactions that foster the dissociation of insoluble MgCl2 and the formation of bi‐anions. The CF3SO3− modulates the solvation sheath to reduce DME coordination strength and penetrates Mg passive films, enabling reversible plating. Concurrently, the bulky B(CF3SO3)4− preferentially decomposes into boron‐rich interphases, enhancing Mg2⁺ transport kinetics while suppressing contact ion pair formation to extend operational temperature range. This combination of exceptional durability, low‐temperature operation (−30 °C), and inherent interfacial self‐healing is rarely observed in boron‐based electrolytes. Critically, the boron‐rich nature of YBTFC electrolyte facilitates B‐O interphase formation on both electrode interfaces. Accordingly, the Mg|YBTFC|Mo6S8 cell achieves a discharge specific capacity of 50 mAh g−1 and outstanding cycling stability of 4500 cycles at a 3C rate. Overall, tailoring Mg2+ coordination chemistry and constructing a boron‐rich interphase via a dual‐anion electrolyte provides a viable approach for realizing long‐life, high‐rate‐performance magnesium batteries.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.