山梨糖醇-烷基胺表面活性剂界面膨胀模量的氢键调节机理及其在绿色泡沫中的应用。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yue Yang, , , Kehan Huang, , , Yuankui Peng, , , Hongyan Xiao, , , Wangjing Ma, , , Lei Zhang*, , and , Lu Zhang*, 
{"title":"山梨糖醇-烷基胺表面活性剂界面膨胀模量的氢键调节机理及其在绿色泡沫中的应用。","authors":"Yue Yang,&nbsp;, ,&nbsp;Kehan Huang,&nbsp;, ,&nbsp;Yuankui Peng,&nbsp;, ,&nbsp;Hongyan Xiao,&nbsp;, ,&nbsp;Wangjing Ma,&nbsp;, ,&nbsp;Lei Zhang*,&nbsp;, and ,&nbsp;Lu Zhang*,&nbsp;","doi":"10.1021/acs.langmuir.5c03034","DOIUrl":null,"url":null,"abstract":"<p >The interfacial arrangement of surfactant molecules dictates the properties of adsorption films, rendering the molecular adsorption mechanisms fundamentally critical. This study integrates interfacial dilational rheology with molecular dynamics simulation to unravel the adsorption mechanism of renewable sorbitol-alkylamine surfactant (SAAS-C<sub>12</sub>) at air/water (A/W) and <i>n</i>-decane/water (D/W) interfaces. We report the first discovery that hydrogen-bond switching governs the precise modulation of interfacial film strength: at the A/W interface, the transition from intramolecular hydrogen-bonded rings (low-concentration, irreversible adsorption) to intermolecular hydrogen-bonded networks (high-concentration, reversible adsorption) drives a distinctive bimodal dilational modulus trend while confining relaxation processes to slow molecular rearrangement. At the D/W interface, <i>n</i>-decane molecules weaken the interaction between surfactant alkyl chains by competing with surfactant molecules via van der Waals forces, converting the high-concentration modulus maximum to a gradual-decay plateau and concurrently redirecting dominant relaxation toward rapid diffusion exchange. Clarifying the mechanism of the interfacial dilational modulus dominated by hydrogen bonds helps to design green surfactants with good foam performance, showing promise for sustainable applications in the food industry, pharmaceutical delivery, and enhanced oil recovery.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 41","pages":"27756–27769"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-Bond Regulation Mechanism of the Interfacial Dilational Modulus in Sorbitol-Alkylamine Surfactants and Their Applications in Green Foams\",\"authors\":\"Yue Yang,&nbsp;, ,&nbsp;Kehan Huang,&nbsp;, ,&nbsp;Yuankui Peng,&nbsp;, ,&nbsp;Hongyan Xiao,&nbsp;, ,&nbsp;Wangjing Ma,&nbsp;, ,&nbsp;Lei Zhang*,&nbsp;, and ,&nbsp;Lu Zhang*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c03034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The interfacial arrangement of surfactant molecules dictates the properties of adsorption films, rendering the molecular adsorption mechanisms fundamentally critical. This study integrates interfacial dilational rheology with molecular dynamics simulation to unravel the adsorption mechanism of renewable sorbitol-alkylamine surfactant (SAAS-C<sub>12</sub>) at air/water (A/W) and <i>n</i>-decane/water (D/W) interfaces. We report the first discovery that hydrogen-bond switching governs the precise modulation of interfacial film strength: at the A/W interface, the transition from intramolecular hydrogen-bonded rings (low-concentration, irreversible adsorption) to intermolecular hydrogen-bonded networks (high-concentration, reversible adsorption) drives a distinctive bimodal dilational modulus trend while confining relaxation processes to slow molecular rearrangement. At the D/W interface, <i>n</i>-decane molecules weaken the interaction between surfactant alkyl chains by competing with surfactant molecules via van der Waals forces, converting the high-concentration modulus maximum to a gradual-decay plateau and concurrently redirecting dominant relaxation toward rapid diffusion exchange. Clarifying the mechanism of the interfacial dilational modulus dominated by hydrogen bonds helps to design green surfactants with good foam performance, showing promise for sustainable applications in the food industry, pharmaceutical delivery, and enhanced oil recovery.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 41\",\"pages\":\"27756–27769\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c03034\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c03034","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面活性剂分子的界面排列决定了吸附膜的性质,使得分子吸附机制从根本上至关重要。本研究将界面膨胀流变学与分子动力学模拟相结合,揭示了可再生山糖醇-烷基胺表面活性剂SAAS-C12在空气/水(A/W)和正癸烷/水(D/W)界面上的吸附机理。我们报告了第一个发现,氢键开关控制着界面膜强度的精确调制:在A/W界面,从分子内氢键环(低浓度,不可逆吸附)到分子间氢键网络(高浓度,可逆吸附)的转变驱动了独特的双峰扩张模量趋势,同时将弛缓过程限制在缓慢的分子重排中。在D/W界面,正癸烷分子通过范德华力与表面活性剂分子竞争,削弱了表面活性剂烷基链之间的相互作用,将高浓度模量最大值转变为逐渐衰减的平台,同时将优势弛豫转向快速扩散交换。澄清以氢键为主的界面膨胀模量的机理有助于设计具有良好泡沫性能的绿色表面活性剂,在食品工业、药物输送和提高石油采收率方面具有可持续的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen-Bond Regulation Mechanism of the Interfacial Dilational Modulus in Sorbitol-Alkylamine Surfactants and Their Applications in Green Foams

Hydrogen-Bond Regulation Mechanism of the Interfacial Dilational Modulus in Sorbitol-Alkylamine Surfactants and Their Applications in Green Foams

The interfacial arrangement of surfactant molecules dictates the properties of adsorption films, rendering the molecular adsorption mechanisms fundamentally critical. This study integrates interfacial dilational rheology with molecular dynamics simulation to unravel the adsorption mechanism of renewable sorbitol-alkylamine surfactant (SAAS-C12) at air/water (A/W) and n-decane/water (D/W) interfaces. We report the first discovery that hydrogen-bond switching governs the precise modulation of interfacial film strength: at the A/W interface, the transition from intramolecular hydrogen-bonded rings (low-concentration, irreversible adsorption) to intermolecular hydrogen-bonded networks (high-concentration, reversible adsorption) drives a distinctive bimodal dilational modulus trend while confining relaxation processes to slow molecular rearrangement. At the D/W interface, n-decane molecules weaken the interaction between surfactant alkyl chains by competing with surfactant molecules via van der Waals forces, converting the high-concentration modulus maximum to a gradual-decay plateau and concurrently redirecting dominant relaxation toward rapid diffusion exchange. Clarifying the mechanism of the interfacial dilational modulus dominated by hydrogen bonds helps to design green surfactants with good foam performance, showing promise for sustainable applications in the food industry, pharmaceutical delivery, and enhanced oil recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信