{"title":"验证年轻的快速射电暴祖先假说:目录-1 CHIME爆发与历史上的局部宇宙超新星的交叉匹配","authors":"Wanqing Liu, Mohit Bhardwaj and Ben Margalit","doi":"10.3847/1538-4357/adff5c","DOIUrl":null,"url":null,"abstract":"Fast radio bursts (FRBs) are among the most energetic and enigmatic transients in the radio sky, with mounting evidence suggesting newborn, highly magnetized neutron stars formed in core-collapse supernovae (CCSNe) as their sources. A definitive spatial association between an FRB and a historic CCSN would confirm this link and tightly constrain young neutron-star source models. Here we report on the first systematic crossmatching of 886 spectroscopically classified CCSNe in the local Universe (z ≤ 0.043) against 241 CHIME/FRB Catalog 1 events, applying rigorous spatial, dispersion measure (DM), and scattering time (τ) criteria. We identify four positional overlaps, all consistent with a chance alignment; however, one pair, FRB 20190412B–SN 2009gi, also satisfies independent host-DM and τ constraints, making it a promising candidate for targeted follow-up. Next, we search for compact (persistent or transient) radio emission at all matched supernova sites using multiepoch Very Large Array Sky Survey data and detect none. Treating every CCSN sight line as a nondetection, we derive Poisson upper limits on the FRB burst rate at these locations, which lie well below the rates observed for the most active repeaters unless their activity is heavily suppressed by beaming, intermittency, or residual free–free absorption. We then develop a galaxy-integrated FRB-rate model that incorporates an intrinsic spectral index, secular magnetar-activity decay, and frequency-dependent free–free opacity. Applying this formalism to existing FRB data shows that reproducing the observed CHIME/CRAFT all-sky rate ratio requires a steep decline in magnetar burst rate with age. Finally, our work underscores the necessity of subarcsecond localizations and multiwavelength follow-up to definitively test the young neutron star source hypothesis.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the Young Fast Radio Burst Progenitor Hypothesis: A Crossmatch of Catalog-1 CHIME Bursts with Historic Local Universe Supernovae\",\"authors\":\"Wanqing Liu, Mohit Bhardwaj and Ben Margalit\",\"doi\":\"10.3847/1538-4357/adff5c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast radio bursts (FRBs) are among the most energetic and enigmatic transients in the radio sky, with mounting evidence suggesting newborn, highly magnetized neutron stars formed in core-collapse supernovae (CCSNe) as their sources. A definitive spatial association between an FRB and a historic CCSN would confirm this link and tightly constrain young neutron-star source models. Here we report on the first systematic crossmatching of 886 spectroscopically classified CCSNe in the local Universe (z ≤ 0.043) against 241 CHIME/FRB Catalog 1 events, applying rigorous spatial, dispersion measure (DM), and scattering time (τ) criteria. We identify four positional overlaps, all consistent with a chance alignment; however, one pair, FRB 20190412B–SN 2009gi, also satisfies independent host-DM and τ constraints, making it a promising candidate for targeted follow-up. Next, we search for compact (persistent or transient) radio emission at all matched supernova sites using multiepoch Very Large Array Sky Survey data and detect none. Treating every CCSN sight line as a nondetection, we derive Poisson upper limits on the FRB burst rate at these locations, which lie well below the rates observed for the most active repeaters unless their activity is heavily suppressed by beaming, intermittency, or residual free–free absorption. We then develop a galaxy-integrated FRB-rate model that incorporates an intrinsic spectral index, secular magnetar-activity decay, and frequency-dependent free–free opacity. Applying this formalism to existing FRB data shows that reproducing the observed CHIME/CRAFT all-sky rate ratio requires a steep decline in magnetar burst rate with age. Finally, our work underscores the necessity of subarcsecond localizations and multiwavelength follow-up to definitively test the young neutron star source hypothesis.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/adff5c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adff5c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing the Young Fast Radio Burst Progenitor Hypothesis: A Crossmatch of Catalog-1 CHIME Bursts with Historic Local Universe Supernovae
Fast radio bursts (FRBs) are among the most energetic and enigmatic transients in the radio sky, with mounting evidence suggesting newborn, highly magnetized neutron stars formed in core-collapse supernovae (CCSNe) as their sources. A definitive spatial association between an FRB and a historic CCSN would confirm this link and tightly constrain young neutron-star source models. Here we report on the first systematic crossmatching of 886 spectroscopically classified CCSNe in the local Universe (z ≤ 0.043) against 241 CHIME/FRB Catalog 1 events, applying rigorous spatial, dispersion measure (DM), and scattering time (τ) criteria. We identify four positional overlaps, all consistent with a chance alignment; however, one pair, FRB 20190412B–SN 2009gi, also satisfies independent host-DM and τ constraints, making it a promising candidate for targeted follow-up. Next, we search for compact (persistent or transient) radio emission at all matched supernova sites using multiepoch Very Large Array Sky Survey data and detect none. Treating every CCSN sight line as a nondetection, we derive Poisson upper limits on the FRB burst rate at these locations, which lie well below the rates observed for the most active repeaters unless their activity is heavily suppressed by beaming, intermittency, or residual free–free absorption. We then develop a galaxy-integrated FRB-rate model that incorporates an intrinsic spectral index, secular magnetar-activity decay, and frequency-dependent free–free opacity. Applying this formalism to existing FRB data shows that reproducing the observed CHIME/CRAFT all-sky rate ratio requires a steep decline in magnetar burst rate with age. Finally, our work underscores the necessity of subarcsecond localizations and multiwavelength follow-up to definitively test the young neutron star source hypothesis.