利用射电光谱成像观测蟹状星云日冕和日球层的湍流

Peijin Zhang, Surajit Mondal, Bin Chen, Sijie Yu, Dale Gary, Marin M. Anderson, Judd D. Bowman, Ruby Byrne, Morgan Catha, Xingyao Chen, Sherry Chhabra, Larry D’Addario, Ivey Davis, Jayce Dowell, Katherine Elder, Gregg Hallinan, Charlie Harnach, Greg Hellbourg, Jack Hickish, Rick Hobbs, David Hodge, Mark Hodges, Yuping Huang, Andrea Isella, Daniel C. Jacobs, Ghislain Kemby, John T. Klinefelter, Matthew Kolopanis, Nikita Kosogorov, James Lamb, Casey J. Law, Nivedita Mahesh, Brian O’Donnell, Kathryn Plant, Corey Posner, Travis Powell, Vinand Prayag, Andres Rizo, Andrew Romero-Wolf, Jun Shi, Greg Taylor, Jordan Trim, Mike Virgin, Akshatha Vydula, Sandy Weinreb and David Woody
{"title":"利用射电光谱成像观测蟹状星云日冕和日球层的湍流","authors":"Peijin Zhang, Surajit Mondal, Bin Chen, Sijie Yu, Dale Gary, Marin M. Anderson, Judd D. Bowman, Ruby Byrne, Morgan Catha, Xingyao Chen, Sherry Chhabra, Larry D’Addario, Ivey Davis, Jayce Dowell, Katherine Elder, Gregg Hallinan, Charlie Harnach, Greg Hellbourg, Jack Hickish, Rick Hobbs, David Hodge, Mark Hodges, Yuping Huang, Andrea Isella, Daniel C. Jacobs, Ghislain Kemby, John T. Klinefelter, Matthew Kolopanis, Nikita Kosogorov, James Lamb, Casey J. Law, Nivedita Mahesh, Brian O’Donnell, Kathryn Plant, Corey Posner, Travis Powell, Vinand Prayag, Andres Rizo, Andrew Romero-Wolf, Jun Shi, Greg Taylor, Jordan Trim, Mike Virgin, Akshatha Vydula, Sandy Weinreb and David Woody","doi":"10.3847/1538-4357/adff56","DOIUrl":null,"url":null,"abstract":"Measuring plasma parameters in the upper solar corona and inner heliosphere is challenging because of the region’s weakly emissive nature and inaccessibility for most in situ observations. Radio imaging of broadened and distorted background astronomical radio sources during solar conjunction can provide unique constraints for the coronal material along the line of sight. In this study, we present radio spectral imaging observations of the Crab Nebula (Tau A) from 2024 June 9 to June 22 when it was near the Sun with a projected heliocentric distance of 5–27 solar radii, using the Owens Valley Radio Observatory’s Long Wavelength Array at multiple frequencies in the 30–80 MHz range. The imaging data reveal frequency-dependent broadening and distortion effects caused by anisotropic wave propagation through the turbulent solar corona at different distances. We analyze the brightness, size, and anisotropy of the broadened images. Our results provide detailed observations showing that the eccentricity of the unresolved source increases as the line of sight approaches the Sun, suggesting a higher anisotropic ratio of the plasma turbulence closer to the Sun. In addition, the major axis of the elongated source is consistently oriented in the direction perpendicular to the radial direction, suggesting that the turbulence-induced scattering effect is more pronounced in the direction transverse to the coronal magnetic field. Lastly, when the source undergoes large-scale refraction as the line of sight passes through a streamer, the apparent source exhibits substructures at lower frequencies. This study demonstrates that observations of celestial radio sources with lines of sight near the Sun provide a promising method for measuring turbulence parameters in the inner heliosphere.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Turbulent Corona and Heliosphere Using Radio Spectral Imaging Observation during the Solar Conjunction of the Crab Nebula\",\"authors\":\"Peijin Zhang, Surajit Mondal, Bin Chen, Sijie Yu, Dale Gary, Marin M. Anderson, Judd D. Bowman, Ruby Byrne, Morgan Catha, Xingyao Chen, Sherry Chhabra, Larry D’Addario, Ivey Davis, Jayce Dowell, Katherine Elder, Gregg Hallinan, Charlie Harnach, Greg Hellbourg, Jack Hickish, Rick Hobbs, David Hodge, Mark Hodges, Yuping Huang, Andrea Isella, Daniel C. Jacobs, Ghislain Kemby, John T. Klinefelter, Matthew Kolopanis, Nikita Kosogorov, James Lamb, Casey J. Law, Nivedita Mahesh, Brian O’Donnell, Kathryn Plant, Corey Posner, Travis Powell, Vinand Prayag, Andres Rizo, Andrew Romero-Wolf, Jun Shi, Greg Taylor, Jordan Trim, Mike Virgin, Akshatha Vydula, Sandy Weinreb and David Woody\",\"doi\":\"10.3847/1538-4357/adff56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring plasma parameters in the upper solar corona and inner heliosphere is challenging because of the region’s weakly emissive nature and inaccessibility for most in situ observations. Radio imaging of broadened and distorted background astronomical radio sources during solar conjunction can provide unique constraints for the coronal material along the line of sight. In this study, we present radio spectral imaging observations of the Crab Nebula (Tau A) from 2024 June 9 to June 22 when it was near the Sun with a projected heliocentric distance of 5–27 solar radii, using the Owens Valley Radio Observatory’s Long Wavelength Array at multiple frequencies in the 30–80 MHz range. The imaging data reveal frequency-dependent broadening and distortion effects caused by anisotropic wave propagation through the turbulent solar corona at different distances. We analyze the brightness, size, and anisotropy of the broadened images. Our results provide detailed observations showing that the eccentricity of the unresolved source increases as the line of sight approaches the Sun, suggesting a higher anisotropic ratio of the plasma turbulence closer to the Sun. In addition, the major axis of the elongated source is consistently oriented in the direction perpendicular to the radial direction, suggesting that the turbulence-induced scattering effect is more pronounced in the direction transverse to the coronal magnetic field. Lastly, when the source undergoes large-scale refraction as the line of sight passes through a streamer, the apparent source exhibits substructures at lower frequencies. This study demonstrates that observations of celestial radio sources with lines of sight near the Sun provide a promising method for measuring turbulence parameters in the inner heliosphere.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/adff56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adff56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测量上日冕和内日球层的等离子体参数是具有挑战性的,因为该区域的弱发射性质和大多数现场观测无法进入。在日全食期间,对背景变宽和扭曲的天文射电源的射电成像可以为视界上的日冕物质提供独特的约束条件。在这项研究中,我们利用欧文斯谷射电天文台的长波阵列,在30-80 MHz的多个频率范围内,对蟹状星云(Tau A)在2024年6月9日至6月22日期间在太阳附近进行了射电光谱成像观测,预计日心距离为5-27太阳半径。成像数据揭示了各向异性波在不同距离上通过湍流日冕引起的频率相关的展宽和畸变效应。我们分析了加宽后图像的亮度、大小和各向异性。我们的结果提供了详细的观测结果,表明随着视线接近太阳,未解析源的偏心率增加,这表明等离子体湍流的各向异性比更接近太阳。此外,细长源的长轴始终垂直于径向方向,表明湍流引起的散射效应在与日冕磁场横向的方向上更为明显。最后,当光源经历大规模折射时,当视线通过拖缆时,视光源在较低频率处呈现子结构。这项研究表明,用太阳附近的视线观测天体射电源为测量内日球层湍流参数提供了一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing the Turbulent Corona and Heliosphere Using Radio Spectral Imaging Observation during the Solar Conjunction of the Crab Nebula
Measuring plasma parameters in the upper solar corona and inner heliosphere is challenging because of the region’s weakly emissive nature and inaccessibility for most in situ observations. Radio imaging of broadened and distorted background astronomical radio sources during solar conjunction can provide unique constraints for the coronal material along the line of sight. In this study, we present radio spectral imaging observations of the Crab Nebula (Tau A) from 2024 June 9 to June 22 when it was near the Sun with a projected heliocentric distance of 5–27 solar radii, using the Owens Valley Radio Observatory’s Long Wavelength Array at multiple frequencies in the 30–80 MHz range. The imaging data reveal frequency-dependent broadening and distortion effects caused by anisotropic wave propagation through the turbulent solar corona at different distances. We analyze the brightness, size, and anisotropy of the broadened images. Our results provide detailed observations showing that the eccentricity of the unresolved source increases as the line of sight approaches the Sun, suggesting a higher anisotropic ratio of the plasma turbulence closer to the Sun. In addition, the major axis of the elongated source is consistently oriented in the direction perpendicular to the radial direction, suggesting that the turbulence-induced scattering effect is more pronounced in the direction transverse to the coronal magnetic field. Lastly, when the source undergoes large-scale refraction as the line of sight passes through a streamer, the apparent source exhibits substructures at lower frequencies. This study demonstrates that observations of celestial radio sources with lines of sight near the Sun provide a promising method for measuring turbulence parameters in the inner heliosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信