超临界co2辅助下快速合成高效双电子氧还原反应的共价有机骨架电催化剂。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Junqi Song,Zhiqiang Zhang,Weiping Li,Chunli Liu,Guodong Feng,Yaqiong Su,Kai Xi,Hong Yi,Changhai Yi,Lan Peng
{"title":"超临界co2辅助下快速合成高效双电子氧还原反应的共价有机骨架电催化剂。","authors":"Junqi Song,Zhiqiang Zhang,Weiping Li,Chunli Liu,Guodong Feng,Yaqiong Su,Kai Xi,Hong Yi,Changhai Yi,Lan Peng","doi":"10.1038/s41467-025-64901-1","DOIUrl":null,"url":null,"abstract":"Covalent organic frameworks (COFs) hold significant promise as electrocatalysts, but their synthesis is typically constrained by prolonged reaction times (>72 h), high temperatures ( >120 °C), and the use of organic solvents. Conventional methods also involve multiple freeze-pump-thaw cycles, complicating scalability. Herein, we report a supercritical carbon dioxide (Sc-CO2)-assisted strategy for the rapid synthesis of COFs, enabling their direct in-situ growth on carbon substrates. This supercritical-solvothermal approach yields COF@CNT composites that exhibit effective electrocatalytic performance towards the two-electron oxygen reduction reaction (2e- ORR). The resulting catalysts achieve a H2O2 production rate of 94 mol gcat-1 h-1 and a Faradaic efficiency exceeding 95% at 800 mA cm-2. By reducing the consumption of organic solvents, shortening reaction durations, and circumventing high temperatures, this method provides a scalable and efficient route for COF synthesis. Overall, the Sc-CO2 strategy provides a promising platform for the rapid development of COF-based electrocatalysts, combining enhanced efficiency, scalability, and environmental compatibility.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"61 1","pages":"8963"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercritical CO2-assisted rapid synthesis of covalent organic framework-based electrocatalyst for efficient two-electron oxygen reduction reaction.\",\"authors\":\"Junqi Song,Zhiqiang Zhang,Weiping Li,Chunli Liu,Guodong Feng,Yaqiong Su,Kai Xi,Hong Yi,Changhai Yi,Lan Peng\",\"doi\":\"10.1038/s41467-025-64901-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covalent organic frameworks (COFs) hold significant promise as electrocatalysts, but their synthesis is typically constrained by prolonged reaction times (>72 h), high temperatures ( >120 °C), and the use of organic solvents. Conventional methods also involve multiple freeze-pump-thaw cycles, complicating scalability. Herein, we report a supercritical carbon dioxide (Sc-CO2)-assisted strategy for the rapid synthesis of COFs, enabling their direct in-situ growth on carbon substrates. This supercritical-solvothermal approach yields COF@CNT composites that exhibit effective electrocatalytic performance towards the two-electron oxygen reduction reaction (2e- ORR). The resulting catalysts achieve a H2O2 production rate of 94 mol gcat-1 h-1 and a Faradaic efficiency exceeding 95% at 800 mA cm-2. By reducing the consumption of organic solvents, shortening reaction durations, and circumventing high temperatures, this method provides a scalable and efficient route for COF synthesis. Overall, the Sc-CO2 strategy provides a promising platform for the rapid development of COF-based electrocatalysts, combining enhanced efficiency, scalability, and environmental compatibility.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"61 1\",\"pages\":\"8963\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64901-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64901-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)作为电催化剂具有重要的前景,但它们的合成通常受到反应时间长(72小时)、高温(120°C)和使用有机溶剂的限制。传统的方法还涉及多个冷冻泵-解冻循环,使可扩展性复杂化。在此,我们报告了一种超临界二氧化碳(Sc-CO2)辅助策略,用于快速合成COFs,使其能够在碳基质上直接原位生长。这种超临界溶剂热方法产生COF@CNT复合材料,对双电子氧还原反应(2e- ORR)表现出有效的电催化性能。所得催化剂在800 mA cm-2下的H2O2产率为94 mol gcat-1 h-1,法拉第效率超过95%。该方法减少了有机溶剂的消耗,缩短了反应时间,并且避开了高温,为COF的合成提供了一条可扩展和高效的途径。总的来说,Sc-CO2策略为基于cof的电催化剂的快速发展提供了一个有前途的平台,结合了更高的效率、可扩展性和环境兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercritical CO2-assisted rapid synthesis of covalent organic framework-based electrocatalyst for efficient two-electron oxygen reduction reaction.
Covalent organic frameworks (COFs) hold significant promise as electrocatalysts, but their synthesis is typically constrained by prolonged reaction times (>72 h), high temperatures ( >120 °C), and the use of organic solvents. Conventional methods also involve multiple freeze-pump-thaw cycles, complicating scalability. Herein, we report a supercritical carbon dioxide (Sc-CO2)-assisted strategy for the rapid synthesis of COFs, enabling their direct in-situ growth on carbon substrates. This supercritical-solvothermal approach yields COF@CNT composites that exhibit effective electrocatalytic performance towards the two-electron oxygen reduction reaction (2e- ORR). The resulting catalysts achieve a H2O2 production rate of 94 mol gcat-1 h-1 and a Faradaic efficiency exceeding 95% at 800 mA cm-2. By reducing the consumption of organic solvents, shortening reaction durations, and circumventing high temperatures, this method provides a scalable and efficient route for COF synthesis. Overall, the Sc-CO2 strategy provides a promising platform for the rapid development of COF-based electrocatalysts, combining enhanced efficiency, scalability, and environmental compatibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信