CBL相互作用的蛋白激酶ZmCIPK12赋予玉米耐盐性

IF 8.1 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2025-10-09 DOI:10.1111/nph.70602
Jian Li, Xinyun Han, Yiru Wang, Yangsong Chen, Xunji Chen, Yuhang Guo, Zhen Chen, Xiaodong Wang, Quansheng Huang, Chun Liu, Wenyue Wang, Rui Li, Zhifeng Chen, Yang Qin, Jian Hua, Jun Zheng
{"title":"CBL相互作用的蛋白激酶ZmCIPK12赋予玉米耐盐性","authors":"Jian Li, Xinyun Han, Yiru Wang, Yangsong Chen, Xunji Chen, Yuhang Guo, Zhen Chen, Xiaodong Wang, Quansheng Huang, Chun Liu, Wenyue Wang, Rui Li, Zhifeng Chen, Yang Qin, Jian Hua, Jun Zheng","doi":"10.1111/nph.70602","DOIUrl":null,"url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>Increasing salt stress tolerance is crucial for sustainable agriculture, including the production of the major crop maize (<jats:italic>Zea mays</jats:italic>). However, the molecular mechanism of salt stress tolerance remains largely unknown in maize.</jats:list-item> <jats:list-item>Here, we studied the function and mechanism of the maize <jats:italic>calcineurin B‐Like‐interacting protein kinase 12</jats:italic> (<jats:italic>ZmCIPK12</jats:italic>) in salt stress tolerance using mutant study, protein–protein interaction assay, protein biochemical characterization, and transcriptome analysis.</jats:list-item> <jats:list-item>We show that the loss of <jats:italic>ZmCIPK12</jats:italic> function reduces salt tolerance in maize, while its overexpression increases salt tolerance. ZmCIPK12 interacts with the maize‐soluble inorganic pyrophosphatase 4 (ZmPPase4) and inhibits its degradation. The loss of function of <jats:italic>ZmPPase4</jats:italic>, similar to that of <jats:italic>ZmCIPK12</jats:italic>, causes salt stress susceptibility in maize. In addition, the <jats:italic>ZmCIPK12</jats:italic> and <jats:italic>ZmPPase4</jats:italic> affect cell wall thickness under salt stress, which likely contributes to salt tolerance.</jats:list-item> <jats:list-item>Taken together, this study shows that ZmCIPK12 enhances salt tolerance likely through stabilizing ZmPPase4 and regulating cell wall thickness. It broadens our understanding of the plant salt tolerance mechanism and provides potential targets for improving salt tolerance in maize.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"108 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CBL‐interacting protein kinase ZmCIPK12 confers salt tolerance in maize\",\"authors\":\"Jian Li, Xinyun Han, Yiru Wang, Yangsong Chen, Xunji Chen, Yuhang Guo, Zhen Chen, Xiaodong Wang, Quansheng Huang, Chun Liu, Wenyue Wang, Rui Li, Zhifeng Chen, Yang Qin, Jian Hua, Jun Zheng\",\"doi\":\"10.1111/nph.70602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Increasing salt stress tolerance is crucial for sustainable agriculture, including the production of the major crop maize (<jats:italic>Zea mays</jats:italic>). However, the molecular mechanism of salt stress tolerance remains largely unknown in maize.</jats:list-item> <jats:list-item>Here, we studied the function and mechanism of the maize <jats:italic>calcineurin B‐Like‐interacting protein kinase 12</jats:italic> (<jats:italic>ZmCIPK12</jats:italic>) in salt stress tolerance using mutant study, protein–protein interaction assay, protein biochemical characterization, and transcriptome analysis.</jats:list-item> <jats:list-item>We show that the loss of <jats:italic>ZmCIPK12</jats:italic> function reduces salt tolerance in maize, while its overexpression increases salt tolerance. ZmCIPK12 interacts with the maize‐soluble inorganic pyrophosphatase 4 (ZmPPase4) and inhibits its degradation. The loss of function of <jats:italic>ZmPPase4</jats:italic>, similar to that of <jats:italic>ZmCIPK12</jats:italic>, causes salt stress susceptibility in maize. In addition, the <jats:italic>ZmCIPK12</jats:italic> and <jats:italic>ZmPPase4</jats:italic> affect cell wall thickness under salt stress, which likely contributes to salt tolerance.</jats:list-item> <jats:list-item>Taken together, this study shows that ZmCIPK12 enhances salt tolerance likely through stabilizing ZmPPase4 and regulating cell wall thickness. It broadens our understanding of the plant salt tolerance mechanism and provides potential targets for improving salt tolerance in maize.</jats:list-item> </jats:list>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.70602\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70602","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

提高耐盐性对可持续农业至关重要,包括主要作物玉米(Zea mays)的生产。然而,玉米耐盐胁迫的分子机制仍不甚清楚。本文通过突变体研究、蛋白-蛋白相互作用实验、蛋白生化表征和转录组分析,研究了玉米钙调磷酸酶B样相互作用蛋白激酶12 (ZmCIPK12)在盐胁迫抗性中的功能和机制。我们发现ZmCIPK12功能的缺失降低了玉米的耐盐性,而其过表达则增加了耐盐性。ZmCIPK12与玉米可溶性无机焦磷酸酶4 (ZmPPase4)相互作用,抑制其降解。ZmPPase4的功能丧失与ZmCIPK12类似,导致玉米对盐胁迫敏感。此外,ZmCIPK12和ZmPPase4在盐胁迫下影响细胞壁厚度,这可能有助于耐盐性。综上所述,本研究表明ZmCIPK12可能通过稳定ZmPPase4和调节细胞壁厚度来增强耐盐性。这拓宽了我们对植物耐盐机制的认识,并为提高玉米耐盐性提供了潜在的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CBL‐interacting protein kinase ZmCIPK12 confers salt tolerance in maize
Summary Increasing salt stress tolerance is crucial for sustainable agriculture, including the production of the major crop maize (Zea mays). However, the molecular mechanism of salt stress tolerance remains largely unknown in maize. Here, we studied the function and mechanism of the maize calcineurin B‐Like‐interacting protein kinase 12 (ZmCIPK12) in salt stress tolerance using mutant study, protein–protein interaction assay, protein biochemical characterization, and transcriptome analysis. We show that the loss of ZmCIPK12 function reduces salt tolerance in maize, while its overexpression increases salt tolerance. ZmCIPK12 interacts with the maize‐soluble inorganic pyrophosphatase 4 (ZmPPase4) and inhibits its degradation. The loss of function of ZmPPase4, similar to that of ZmCIPK12, causes salt stress susceptibility in maize. In addition, the ZmCIPK12 and ZmPPase4 affect cell wall thickness under salt stress, which likely contributes to salt tolerance. Taken together, this study shows that ZmCIPK12 enhances salt tolerance likely through stabilizing ZmPPase4 and regulating cell wall thickness. It broadens our understanding of the plant salt tolerance mechanism and provides potential targets for improving salt tolerance in maize.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信