协变量存在测量误差和误分类的威布尔回归。

IF 1.8 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Zhiqiang Cao, Man Yu Wong
{"title":"协变量存在测量误差和误分类的威布尔回归。","authors":"Zhiqiang Cao,&nbsp;Man Yu Wong","doi":"10.1002/bimj.70083","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The problem of measurement error and misclassification in covariates is ubiquitous in nutritional epidemiology and some other research areas, which often leads to biased estimate and loss of power. However, addressing both measurement error and misclassification simultaneously in a single analysis is challenged and less actively studied, especially in regression model for survival data with censoring. The approximate maximum likelihood estimation (AMLE) has been proved to be an effective method to correct both measurement error and misclassification simultaneously in a logistic regression model. However, its impact on survival analysis models has not been studied. In this paper, we study biases caused by both measurement error and misclassification in covariates from a Weibull accelerated failure time model, and explore the use of AMLE and its asymptotic properties to correct these biases. Extensive simulation studies are conducted to evaluate the finite-sample performance of the resulting estimator. The proposed method is then applied to deal with measurement error and misclassification in some nutrients of interest from the EPIC-InterAct Study.</p></div>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weibull Regression With Both Measurement Error and Misclassification in Covariates\",\"authors\":\"Zhiqiang Cao,&nbsp;Man Yu Wong\",\"doi\":\"10.1002/bimj.70083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The problem of measurement error and misclassification in covariates is ubiquitous in nutritional epidemiology and some other research areas, which often leads to biased estimate and loss of power. However, addressing both measurement error and misclassification simultaneously in a single analysis is challenged and less actively studied, especially in regression model for survival data with censoring. The approximate maximum likelihood estimation (AMLE) has been proved to be an effective method to correct both measurement error and misclassification simultaneously in a logistic regression model. However, its impact on survival analysis models has not been studied. In this paper, we study biases caused by both measurement error and misclassification in covariates from a Weibull accelerated failure time model, and explore the use of AMLE and its asymptotic properties to correct these biases. Extensive simulation studies are conducted to evaluate the finite-sample performance of the resulting estimator. The proposed method is then applied to deal with measurement error and misclassification in some nutrients of interest from the EPIC-InterAct Study.</p></div>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70083\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70083","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在营养流行病学和其他一些研究领域中,协变量的测量误差和误分类问题普遍存在,这往往导致估计的偏倚和功率损失。然而,在单一分析中同时解决测量误差和错误分类是一个挑战,而且研究较少,特别是在带有审查的生存数据的回归模型中。近似最大似然估计(AMLE)已被证明是一种同时校正逻辑回归模型测量误差和误分类的有效方法。然而,它对生存分析模型的影响尚未得到研究。在本文中,我们研究了威布尔加速失效时间模型中由测量误差和误分类引起的偏差,并探索了利用AMLE及其渐近性质来纠正这些偏差。进行了广泛的仿真研究,以评估所得估计器的有限样本性能。提出的方法随后被应用于处理EPIC-InterAct研究中一些感兴趣的营养物质的测量误差和错误分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weibull Regression With Both Measurement Error and Misclassification in Covariates

Weibull Regression With Both Measurement Error and Misclassification in Covariates

The problem of measurement error and misclassification in covariates is ubiquitous in nutritional epidemiology and some other research areas, which often leads to biased estimate and loss of power. However, addressing both measurement error and misclassification simultaneously in a single analysis is challenged and less actively studied, especially in regression model for survival data with censoring. The approximate maximum likelihood estimation (AMLE) has been proved to be an effective method to correct both measurement error and misclassification simultaneously in a logistic regression model. However, its impact on survival analysis models has not been studied. In this paper, we study biases caused by both measurement error and misclassification in covariates from a Weibull accelerated failure time model, and explore the use of AMLE and its asymptotic properties to correct these biases. Extensive simulation studies are conducted to evaluate the finite-sample performance of the resulting estimator. The proposed method is then applied to deal with measurement error and misclassification in some nutrients of interest from the EPIC-InterAct Study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信