Killian A. C. Melsen, Jonathan F. Kunst, José Crossa, Margaret R. Krause, Fred A. van Eeuwijk, Willem Kruijer, Carel F. W. Peeters
{"title":"利用高维次级表型改进基因组预测:遗传潜在因子方法。","authors":"Killian A. C. Melsen, Jonathan F. Kunst, José Crossa, Margaret R. Krause, Fred A. van Eeuwijk, Willem Kruijer, Carel F. W. Peeters","doi":"10.1002/bimj.70081","DOIUrl":null,"url":null,"abstract":"<p>Decreasing costs and new technologies have led to an increase in the amount of data available to plant breeding programs. High-throughput phenotyping (HTP) platforms routinely generate high-dimensional datasets of secondary features that may be used to improve genomic prediction accuracy. However, integration of these data comes with challenges such as multicollinearity, parameter estimation in <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>></mo>\n <mi>n</mi>\n </mrow>\n <annotation>$p > n$</annotation>\n </semantics></math> settings, and the computational complexity of many standard approaches. Several methods have emerged to analyze such data, but interpretation of model parameters often remains challenging. We propose genetic latent factor best linear unbiased prediction (glfBLUP), a prediction pipeline that reduces the dimensionality of the original secondary HTP data using generative factor analysis. In short, glfBLUP uses redundancy filtered and regularized genetic and residual correlation matrices to fit a maximum likelihood factor model and estimate genetic latent factor scores. These latent factors are subsequently used in multitrait genomic prediction. Our approach performs better than alternatives in extensive simulations and a real-world application, while producing easily interpretable and biologically relevant parameters. We discuss several possible extensions and highlight glfBLUP as the basis for a flexible and modular multitrait genomic prediction framework.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504928/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Genomic Prediction Using High-Dimensional Secondary Phenotypes: The Genetic Latent Factor Approach\",\"authors\":\"Killian A. C. Melsen, Jonathan F. Kunst, José Crossa, Margaret R. Krause, Fred A. van Eeuwijk, Willem Kruijer, Carel F. W. Peeters\",\"doi\":\"10.1002/bimj.70081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Decreasing costs and new technologies have led to an increase in the amount of data available to plant breeding programs. High-throughput phenotyping (HTP) platforms routinely generate high-dimensional datasets of secondary features that may be used to improve genomic prediction accuracy. However, integration of these data comes with challenges such as multicollinearity, parameter estimation in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>></mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$p > n$</annotation>\\n </semantics></math> settings, and the computational complexity of many standard approaches. Several methods have emerged to analyze such data, but interpretation of model parameters often remains challenging. We propose genetic latent factor best linear unbiased prediction (glfBLUP), a prediction pipeline that reduces the dimensionality of the original secondary HTP data using generative factor analysis. In short, glfBLUP uses redundancy filtered and regularized genetic and residual correlation matrices to fit a maximum likelihood factor model and estimate genetic latent factor scores. These latent factors are subsequently used in multitrait genomic prediction. Our approach performs better than alternatives in extensive simulations and a real-world application, while producing easily interpretable and biologically relevant parameters. We discuss several possible extensions and highlight glfBLUP as the basis for a flexible and modular multitrait genomic prediction framework.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70081\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70081","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Improving Genomic Prediction Using High-Dimensional Secondary Phenotypes: The Genetic Latent Factor Approach
Decreasing costs and new technologies have led to an increase in the amount of data available to plant breeding programs. High-throughput phenotyping (HTP) platforms routinely generate high-dimensional datasets of secondary features that may be used to improve genomic prediction accuracy. However, integration of these data comes with challenges such as multicollinearity, parameter estimation in settings, and the computational complexity of many standard approaches. Several methods have emerged to analyze such data, but interpretation of model parameters often remains challenging. We propose genetic latent factor best linear unbiased prediction (glfBLUP), a prediction pipeline that reduces the dimensionality of the original secondary HTP data using generative factor analysis. In short, glfBLUP uses redundancy filtered and regularized genetic and residual correlation matrices to fit a maximum likelihood factor model and estimate genetic latent factor scores. These latent factors are subsequently used in multitrait genomic prediction. Our approach performs better than alternatives in extensive simulations and a real-world application, while producing easily interpretable and biologically relevant parameters. We discuss several possible extensions and highlight glfBLUP as the basis for a flexible and modular multitrait genomic prediction framework.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.