DNA合成的空间映射揭示了人类复制纳米结构的动力学和几何结构。

IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Michael Hawgood, Bruno Urién, Ana Agostinho, Praghadhesh Thiagarajan, Giovanni Giglio, Yiqiu Yang, Xue Zhang, Gemma Quijada, Matilde Fonseca, Jiri Bartek, Hans Blom, Bennie Lemmens
{"title":"DNA合成的空间映射揭示了人类复制纳米结构的动力学和几何结构。","authors":"Michael Hawgood, Bruno Urién, Ana Agostinho, Praghadhesh Thiagarajan, Giovanni Giglio, Yiqiu Yang, Xue Zhang, Gemma Quijada, Matilde Fonseca, Jiri Bartek, Hans Blom, Bennie Lemmens","doi":"10.1038/s44318-025-00574-2","DOIUrl":null,"url":null,"abstract":"<p><p>DNA replication is essential to life and ensures the accurate transmission of genetic information, which is significantly disturbed during cancer development and chemotherapy. While DNA replication is tightly controlled in time and space, methods to visualise and quantify replication dynamics within 3D human cells are lacking. Here, we introduce 3D-Spatial Assay for Replication Kinetics (3D-SPARK), an approach enabling nanoscale analysis of DNA synthesis dynamics in situ. 3D-SPARK integrates optimised nucleotide analogue pulse labelling with super-resolution microscopy to detect, classify, and quantify replication nanostructures in single cells. By combining immunofluorescence techniques with click chemistry-based nascent DNA labelling and transfection of fluorescent nucleotide derivatives, we map multi-colour DNA synthesis events in relation to established replication proteins, local RNA-protein condensates or large subnuclear domains. We demonstrate quantitative changes in size, relative abundance and spatial arrangement of nanoscale DNA synthesis events upon chemotherapeutic treatment, CDC6 oncogene expression and loss of chromatin organiser RIF1. The flexibility, precision and modular design of 3D-SPARK helps bridging the gap between spatial cell biology, genomics, and 2D fibre-based replication studies in health and disease.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial mapping of DNA synthesis reveals dynamics and geometry of human replication nanostructures.\",\"authors\":\"Michael Hawgood, Bruno Urién, Ana Agostinho, Praghadhesh Thiagarajan, Giovanni Giglio, Yiqiu Yang, Xue Zhang, Gemma Quijada, Matilde Fonseca, Jiri Bartek, Hans Blom, Bennie Lemmens\",\"doi\":\"10.1038/s44318-025-00574-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA replication is essential to life and ensures the accurate transmission of genetic information, which is significantly disturbed during cancer development and chemotherapy. While DNA replication is tightly controlled in time and space, methods to visualise and quantify replication dynamics within 3D human cells are lacking. Here, we introduce 3D-Spatial Assay for Replication Kinetics (3D-SPARK), an approach enabling nanoscale analysis of DNA synthesis dynamics in situ. 3D-SPARK integrates optimised nucleotide analogue pulse labelling with super-resolution microscopy to detect, classify, and quantify replication nanostructures in single cells. By combining immunofluorescence techniques with click chemistry-based nascent DNA labelling and transfection of fluorescent nucleotide derivatives, we map multi-colour DNA synthesis events in relation to established replication proteins, local RNA-protein condensates or large subnuclear domains. We demonstrate quantitative changes in size, relative abundance and spatial arrangement of nanoscale DNA synthesis events upon chemotherapeutic treatment, CDC6 oncogene expression and loss of chromatin organiser RIF1. The flexibility, precision and modular design of 3D-SPARK helps bridging the gap between spatial cell biology, genomics, and 2D fibre-based replication studies in health and disease.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00574-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00574-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

DNA复制对生命至关重要,并确保遗传信息的准确传递,而在癌症的发展和化疗过程中,遗传信息受到严重干扰。虽然DNA复制在时间和空间上受到严格控制,但缺乏在3D人类细胞内可视化和量化复制动态的方法。在这里,我们介绍了3d -空间复制动力学分析(3D-SPARK),这是一种能够原位分析DNA合成动力学的纳米级方法。3D-SPARK集成了优化的核苷酸类似物脉冲标记与超分辨率显微镜检测,分类,并量化复制纳米结构在单细胞。通过将免疫荧光技术与基于点击化学的新生DNA标记和荧光核苷酸衍生物的转染相结合,我们绘制了与已建立的复制蛋白、局部rna -蛋白凝聚物或大亚核结构域相关的多色DNA合成事件。我们证明了在化疗、CDC6癌基因表达和染色质组织者RIF1缺失的情况下,纳米级DNA合成事件的大小、相对丰度和空间排列的定量变化。3D-SPARK的灵活性、精确性和模块化设计有助于弥合空间细胞生物学、基因组学和基于二维纤维的健康和疾病复制研究之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial mapping of DNA synthesis reveals dynamics and geometry of human replication nanostructures.

DNA replication is essential to life and ensures the accurate transmission of genetic information, which is significantly disturbed during cancer development and chemotherapy. While DNA replication is tightly controlled in time and space, methods to visualise and quantify replication dynamics within 3D human cells are lacking. Here, we introduce 3D-Spatial Assay for Replication Kinetics (3D-SPARK), an approach enabling nanoscale analysis of DNA synthesis dynamics in situ. 3D-SPARK integrates optimised nucleotide analogue pulse labelling with super-resolution microscopy to detect, classify, and quantify replication nanostructures in single cells. By combining immunofluorescence techniques with click chemistry-based nascent DNA labelling and transfection of fluorescent nucleotide derivatives, we map multi-colour DNA synthesis events in relation to established replication proteins, local RNA-protein condensates or large subnuclear domains. We demonstrate quantitative changes in size, relative abundance and spatial arrangement of nanoscale DNA synthesis events upon chemotherapeutic treatment, CDC6 oncogene expression and loss of chromatin organiser RIF1. The flexibility, precision and modular design of 3D-SPARK helps bridging the gap between spatial cell biology, genomics, and 2D fibre-based replication studies in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信