肝脏外科综合混合现实手术导航系统。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-09-01 Epub Date: 2025-10-06 DOI:10.1117/1.JMI.12.5.055001
Bowen Xiang, Jon S Heiselman, Michael I Miga
{"title":"肝脏外科综合混合现实手术导航系统。","authors":"Bowen Xiang, Jon S Heiselman, Michael I Miga","doi":"10.1117/1.JMI.12.5.055001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Intraoperative liver deformation and the need to glance repeatedly between the operative field and a remote monitor undermine the precision and workflow of image-guided liver surgery. Existing mixed reality (MR) prototypes address only isolated aspects of this challenge and lack quantitative validation in deformable anatomy.</p><p><strong>Approach: </strong>We introduce a fully self-contained MR navigation system for liver surgery that runs on a MR headset and bridges this clinical gap by (1) stabilizing holographic content with an external retro-reflective reference tool that defines a fixed world origin, (2) tracking instruments and surface points in real time with the headset's depth camera, and (3) compensating soft-tissue deformation through a weighted ICP + linearized iterative boundary reconstruction pipeline. A lightweight server-client architecture streams deformation-corrected 3D models to the headset and enables hands-free control via voice commands.</p><p><strong>Results: </strong>Validation on a multistate liver-phantom protocol demonstrated that the reference tool reduced mean hologram drift from <math><mrow><mn>4.0</mn> <mo>±</mo> <mn>1.2</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> to <math><mrow><mn>1.1</mn> <mo>±</mo> <mn>0.3</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> and improved tracking accuracy from <math><mrow><mn>3.6</mn> <mo>±</mo> <mn>1.3</mn></mrow> </math> to <math><mrow><mn>2.3</mn> <mo>±</mo> <mn>0.8</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . Across five simulated deformation states, nonrigid registration lowered surface target registration error from <math><mrow><mn>7.4</mn> <mo>±</mo> <mn>4.8</mn></mrow> </math> to <math><mrow><mn>3.0</mn> <mo>±</mo> <mn>2.7</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> -an average 57% error reduction-yielding sub-4 mm guidance accuracy.</p><p><strong>Conclusions: </strong>By unifying stable MR visualization, tool tracking, and biomechanical deformation correction in a single headset, the proposed platform eliminates monitor-related context switching and restores spatial fidelity lost to liver motion. The device-agnostic framework is extendable to open approaches and potentially laparoscopic workflows and other soft-tissue interventions, marking a significant step toward MR-enabled surgical navigation.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"055001"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499930/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive mixed reality surgical navigation system for liver surgery.\",\"authors\":\"Bowen Xiang, Jon S Heiselman, Michael I Miga\",\"doi\":\"10.1117/1.JMI.12.5.055001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Intraoperative liver deformation and the need to glance repeatedly between the operative field and a remote monitor undermine the precision and workflow of image-guided liver surgery. Existing mixed reality (MR) prototypes address only isolated aspects of this challenge and lack quantitative validation in deformable anatomy.</p><p><strong>Approach: </strong>We introduce a fully self-contained MR navigation system for liver surgery that runs on a MR headset and bridges this clinical gap by (1) stabilizing holographic content with an external retro-reflective reference tool that defines a fixed world origin, (2) tracking instruments and surface points in real time with the headset's depth camera, and (3) compensating soft-tissue deformation through a weighted ICP + linearized iterative boundary reconstruction pipeline. A lightweight server-client architecture streams deformation-corrected 3D models to the headset and enables hands-free control via voice commands.</p><p><strong>Results: </strong>Validation on a multistate liver-phantom protocol demonstrated that the reference tool reduced mean hologram drift from <math><mrow><mn>4.0</mn> <mo>±</mo> <mn>1.2</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> to <math><mrow><mn>1.1</mn> <mo>±</mo> <mn>0.3</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> and improved tracking accuracy from <math><mrow><mn>3.6</mn> <mo>±</mo> <mn>1.3</mn></mrow> </math> to <math><mrow><mn>2.3</mn> <mo>±</mo> <mn>0.8</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> . Across five simulated deformation states, nonrigid registration lowered surface target registration error from <math><mrow><mn>7.4</mn> <mo>±</mo> <mn>4.8</mn></mrow> </math> to <math><mrow><mn>3.0</mn> <mo>±</mo> <mn>2.7</mn> <mtext>  </mtext> <mi>mm</mi></mrow> </math> -an average 57% error reduction-yielding sub-4 mm guidance accuracy.</p><p><strong>Conclusions: </strong>By unifying stable MR visualization, tool tracking, and biomechanical deformation correction in a single headset, the proposed platform eliminates monitor-related context switching and restores spatial fidelity lost to liver motion. The device-agnostic framework is extendable to open approaches and potentially laparoscopic workflows and other soft-tissue interventions, marking a significant step toward MR-enabled surgical navigation.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 5\",\"pages\":\"055001\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499930/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.5.055001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.5.055001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:术中肝脏变形,需要在手术视野和远程监护仪之间反复扫视,影响了图像引导下肝脏手术的准确性和工作流程。现有的混合现实(MR)原型仅解决了这一挑战的孤立方面,并且在可变形解剖中缺乏定量验证。方法:我们介绍了一种完全独立的肝脏手术MR导航系统,该系统运行在MR头戴式设备上,通过(1)使用外部回溯反射参考工具稳定全息内容,定义固定的世界原点,(2)使用头戴式设备的深度相机实时跟踪仪器和表面点,以及(3)通过加权ICP +线性化迭代边界重建管道补偿软组织变形。轻量级的服务器-客户端架构将变形校正的3D模型传输到耳机,并通过语音命令实现免提控制。结果:在多状态肝幻影方案上的验证表明,参考工具将平均全息图漂移从4.0±1.2 mm减少到1.1±0.3 mm,并将跟踪精度从3.6±1.3提高到2.3±0.8 mm。在五种模拟变形状态下,非刚性配准将表面目标配准误差从7.4±4.8 mm降低到3.0±2.7 mm,平均误差降低57%,制导精度低于4 mm。结论:通过将稳定的MR可视化、工具跟踪和生物力学变形校正统一到一个头戴式设备中,该平台消除了与监视器相关的上下文切换,并恢复了肝脏运动丢失的空间保真度。与设备无关的框架可扩展到开放式方法,潜在的腹腔镜工作流程和其他软组织干预,标志着向磁共振手术导航迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive mixed reality surgical navigation system for liver surgery.

Purpose: Intraoperative liver deformation and the need to glance repeatedly between the operative field and a remote monitor undermine the precision and workflow of image-guided liver surgery. Existing mixed reality (MR) prototypes address only isolated aspects of this challenge and lack quantitative validation in deformable anatomy.

Approach: We introduce a fully self-contained MR navigation system for liver surgery that runs on a MR headset and bridges this clinical gap by (1) stabilizing holographic content with an external retro-reflective reference tool that defines a fixed world origin, (2) tracking instruments and surface points in real time with the headset's depth camera, and (3) compensating soft-tissue deformation through a weighted ICP + linearized iterative boundary reconstruction pipeline. A lightweight server-client architecture streams deformation-corrected 3D models to the headset and enables hands-free control via voice commands.

Results: Validation on a multistate liver-phantom protocol demonstrated that the reference tool reduced mean hologram drift from 4.0 ± 1.2    mm to 1.1 ± 0.3    mm and improved tracking accuracy from 3.6 ± 1.3 to 2.3 ± 0.8    mm . Across five simulated deformation states, nonrigid registration lowered surface target registration error from 7.4 ± 4.8 to 3.0 ± 2.7    mm -an average 57% error reduction-yielding sub-4 mm guidance accuracy.

Conclusions: By unifying stable MR visualization, tool tracking, and biomechanical deformation correction in a single headset, the proposed platform eliminates monitor-related context switching and restores spatial fidelity lost to liver motion. The device-agnostic framework is extendable to open approaches and potentially laparoscopic workflows and other soft-tissue interventions, marking a significant step toward MR-enabled surgical navigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信