Aakash Jog, Ron Sverdlov, Silvia Schuster, Adi Avni, Yosi Shacham-Diamand
{"title":"植物中利用翻译抑制的可逆遗传NOR门。","authors":"Aakash Jog, Ron Sverdlov, Silvia Schuster, Adi Avni, Yosi Shacham-Diamand","doi":"10.1016/j.tibtech.2025.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>A proof-of-concept reversible genetic logic circuit in tobacco plants is presented. The genetic circuit implements a Boolean NOR function using a Cas6-based translational repression system, with exposure to estradiol and ethanol as inputs, and expression of GFP as the output. Expressed in the presence of the inducers, two Cas6 proteins are used to selectively prevent the translation of GFP. The circuit yields a 40-90% reduction in GFP expression in the presence of the inducers. A mathematical model of the circuit's mechanism of action is proposed and validated using experimentally acquired data. The employed genetic circuit design methodology is versatile, simplistic, and analogous to PMOS-based pass-transistor logic used in electronic circuit design, making it possible to design complex logic circuits without extensive biological expertise. Lowering the barrier to entry, this methodology can help improve the use of synthetic biology and its integration with other systems.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reversible genetic NOR gate in plants using translational repression.\",\"authors\":\"Aakash Jog, Ron Sverdlov, Silvia Schuster, Adi Avni, Yosi Shacham-Diamand\",\"doi\":\"10.1016/j.tibtech.2025.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A proof-of-concept reversible genetic logic circuit in tobacco plants is presented. The genetic circuit implements a Boolean NOR function using a Cas6-based translational repression system, with exposure to estradiol and ethanol as inputs, and expression of GFP as the output. Expressed in the presence of the inducers, two Cas6 proteins are used to selectively prevent the translation of GFP. The circuit yields a 40-90% reduction in GFP expression in the presence of the inducers. A mathematical model of the circuit's mechanism of action is proposed and validated using experimentally acquired data. The employed genetic circuit design methodology is versatile, simplistic, and analogous to PMOS-based pass-transistor logic used in electronic circuit design, making it possible to design complex logic circuits without extensive biological expertise. Lowering the barrier to entry, this methodology can help improve the use of synthetic biology and its integration with other systems.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2025.09.004\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.09.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A reversible genetic NOR gate in plants using translational repression.
A proof-of-concept reversible genetic logic circuit in tobacco plants is presented. The genetic circuit implements a Boolean NOR function using a Cas6-based translational repression system, with exposure to estradiol and ethanol as inputs, and expression of GFP as the output. Expressed in the presence of the inducers, two Cas6 proteins are used to selectively prevent the translation of GFP. The circuit yields a 40-90% reduction in GFP expression in the presence of the inducers. A mathematical model of the circuit's mechanism of action is proposed and validated using experimentally acquired data. The employed genetic circuit design methodology is versatile, simplistic, and analogous to PMOS-based pass-transistor logic used in electronic circuit design, making it possible to design complex logic circuits without extensive biological expertise. Lowering the barrier to entry, this methodology can help improve the use of synthetic biology and its integration with other systems.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).