高性能可逆质子陶瓷电池空气电极的工程协同氧质子特性。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-07-22 eCollection Date: 2025-10-01 DOI:10.1002/smsc.202500256
Na Yu, Xi Chen, Tong Liu, Shuo Zhai, Jiaxin Yuan, Yufei Song, Meng Ni
{"title":"高性能可逆质子陶瓷电池空气电极的工程协同氧质子特性。","authors":"Na Yu, Xi Chen, Tong Liu, Shuo Zhai, Jiaxin Yuan, Yufei Song, Meng Ni","doi":"10.1002/smsc.202500256","DOIUrl":null,"url":null,"abstract":"<p><p>Reversible protonic ceramic cells (RePCCs) promise integration with renewable energy, supporting sustainable energy systems. RePCC performance hinges on the air electrode activity, where optimal proton, oxygen, and electron transport are essential. However, in air electrodes, oxygen exchange requires vacancies, while hydration consumes them, creating a fundamental trade-off. Conventional material design strategies overemphasize hydration, overlooking their impact on oxygen transport. Here, using a simple Nb-doped Sr<sub>3</sub>Fe<sub>2</sub>O<sub>7-δ</sub> (SF) perovskite system, this study demonstrates that balanced oxygen-proton transport properties are essential for high-performance air electrodes. Specifically, SF exhibits abundant oxygen vacancies, yet excessive hydration occupies these vacancies, thereby limiting oxygen-ion transport and impairing oxygen electrocatalytic activity. Optimal Nb doping maintains the oxygen vacancy concentration while effectively suppressing excessive hydration due to the enhanced electrostatic repulsion between lattice cations and protons resulting from Nb doping. The resulting Sr<sub>3</sub>Fe<sub>1.9</sub>Nb<sub>0.1</sub>O<sub>7-δ</sub> (SFNb0.1) electrode achieves a balance between oxygen and proton transport. Furthermore, Nb doping stabilizes the material's crystal structure. As a result, the electrode shows enhanced activity and stability. This work underscores balanced oxygen-proton transport as a key design principle for high-performance RePCC air electrodes.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 10","pages":"2500256"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineering Synergistic Oxygen-Proton Properties for High-Performance Reversible Protonic Ceramic Cell Air Electrodes.\",\"authors\":\"Na Yu, Xi Chen, Tong Liu, Shuo Zhai, Jiaxin Yuan, Yufei Song, Meng Ni\",\"doi\":\"10.1002/smsc.202500256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reversible protonic ceramic cells (RePCCs) promise integration with renewable energy, supporting sustainable energy systems. RePCC performance hinges on the air electrode activity, where optimal proton, oxygen, and electron transport are essential. However, in air electrodes, oxygen exchange requires vacancies, while hydration consumes them, creating a fundamental trade-off. Conventional material design strategies overemphasize hydration, overlooking their impact on oxygen transport. Here, using a simple Nb-doped Sr<sub>3</sub>Fe<sub>2</sub>O<sub>7-δ</sub> (SF) perovskite system, this study demonstrates that balanced oxygen-proton transport properties are essential for high-performance air electrodes. Specifically, SF exhibits abundant oxygen vacancies, yet excessive hydration occupies these vacancies, thereby limiting oxygen-ion transport and impairing oxygen electrocatalytic activity. Optimal Nb doping maintains the oxygen vacancy concentration while effectively suppressing excessive hydration due to the enhanced electrostatic repulsion between lattice cations and protons resulting from Nb doping. The resulting Sr<sub>3</sub>Fe<sub>1.9</sub>Nb<sub>0.1</sub>O<sub>7-δ</sub> (SFNb0.1) electrode achieves a balance between oxygen and proton transport. Furthermore, Nb doping stabilizes the material's crystal structure. As a result, the electrode shows enhanced activity and stability. This work underscores balanced oxygen-proton transport as a key design principle for high-performance RePCC air electrodes.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 10\",\"pages\":\"2500256\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可逆质子陶瓷电池(RePCCs)有望与可再生能源相结合,支持可持续能源系统。RePCC的性能取决于空气电极的活性,其中最佳的质子、氧和电子传递是必不可少的。然而,在空气电极中,氧交换需要空位,而水合作用消耗空位,这就产生了一个基本的权衡。传统的材料设计策略过分强调水合作用,忽略了它们对氧运输的影响。本研究使用简单的nb掺杂Sr3Fe2O7-δ (SF)钙钛矿体系,证明了平衡的氧质子输运性质对于高性能空气电极至关重要。具体来说,SF表现出丰富的氧空位,但过度的水合作用占据了这些空位,从而限制了氧离子的运输,损害了氧的电催化活性。最优的铌掺杂在维持氧空位浓度的同时,有效抑制了晶格阳离子与质子间静电斥力的增强所导致的过度水化。得到的sr3fe1.9 nb0.107 -δ (SFNb0.1)电极实现了氧和质子输运的平衡。此外,铌的掺杂稳定了材料的晶体结构。因此,电极表现出增强的活性和稳定性。这项工作强调平衡氧质子输运是高性能RePCC空气电极的关键设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Synergistic Oxygen-Proton Properties for High-Performance Reversible Protonic Ceramic Cell Air Electrodes.

Reversible protonic ceramic cells (RePCCs) promise integration with renewable energy, supporting sustainable energy systems. RePCC performance hinges on the air electrode activity, where optimal proton, oxygen, and electron transport are essential. However, in air electrodes, oxygen exchange requires vacancies, while hydration consumes them, creating a fundamental trade-off. Conventional material design strategies overemphasize hydration, overlooking their impact on oxygen transport. Here, using a simple Nb-doped Sr3Fe2O7-δ (SF) perovskite system, this study demonstrates that balanced oxygen-proton transport properties are essential for high-performance air electrodes. Specifically, SF exhibits abundant oxygen vacancies, yet excessive hydration occupies these vacancies, thereby limiting oxygen-ion transport and impairing oxygen electrocatalytic activity. Optimal Nb doping maintains the oxygen vacancy concentration while effectively suppressing excessive hydration due to the enhanced electrostatic repulsion between lattice cations and protons resulting from Nb doping. The resulting Sr3Fe1.9Nb0.1O7-δ (SFNb0.1) electrode achieves a balance between oxygen and proton transport. Furthermore, Nb doping stabilizes the material's crystal structure. As a result, the electrode shows enhanced activity and stability. This work underscores balanced oxygen-proton transport as a key design principle for high-performance RePCC air electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信