Kamal Dingle, Pascal Hagolani, Roland Zimm, Muhammad Umar, Samantha O'Sullivan, Ard Louis
{"title":"通过条件复杂度的边界表型转移概率。","authors":"Kamal Dingle, Pascal Hagolani, Roland Zimm, Muhammad Umar, Samantha O'Sullivan, Ard Louis","doi":"10.1098/rsif.2024.0916","DOIUrl":null,"url":null,"abstract":"<p><p>By linking genetic sequences to phenotypic traits, genotype-phenotype maps represent a key layer in biological organization. Their structure modulates the effects of genetic mutations which can contribute to shaping evolutionary outcomes. Recent work based on algorithmic information theory introduced an upper bound on the likelihood of a random genetic mutation causing a transition between two phenotypes, using only the conditional complexity between them. Here we evaluate how well this bound works for a range of genotype-phenotype maps, including a differential equation model for circadian rhythm, a matrix-multiplication model of gene regulatory networks, a developmental model of tooth morphologies for ringed seals, a polyomino-tile shape model of biological self-assembly, and the hydrophobic/polar (HP) lattice protein model. By assessing three levels of predictive performance, we find that the bound provides meaningful estimates of phenotype transition probabilities across these complex systems. These results suggest that transition probabilities can be predicted to some degree directly from the phenotypes themselves, without needing detailed knowledge of the underlying genotype-phenotype map.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 231","pages":"20240916"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503940/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bounding phenotype transition probabilities via conditional complexity.\",\"authors\":\"Kamal Dingle, Pascal Hagolani, Roland Zimm, Muhammad Umar, Samantha O'Sullivan, Ard Louis\",\"doi\":\"10.1098/rsif.2024.0916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By linking genetic sequences to phenotypic traits, genotype-phenotype maps represent a key layer in biological organization. Their structure modulates the effects of genetic mutations which can contribute to shaping evolutionary outcomes. Recent work based on algorithmic information theory introduced an upper bound on the likelihood of a random genetic mutation causing a transition between two phenotypes, using only the conditional complexity between them. Here we evaluate how well this bound works for a range of genotype-phenotype maps, including a differential equation model for circadian rhythm, a matrix-multiplication model of gene regulatory networks, a developmental model of tooth morphologies for ringed seals, a polyomino-tile shape model of biological self-assembly, and the hydrophobic/polar (HP) lattice protein model. By assessing three levels of predictive performance, we find that the bound provides meaningful estimates of phenotype transition probabilities across these complex systems. These results suggest that transition probabilities can be predicted to some degree directly from the phenotypes themselves, without needing detailed knowledge of the underlying genotype-phenotype map.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 231\",\"pages\":\"20240916\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503940/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0916\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0916","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Bounding phenotype transition probabilities via conditional complexity.
By linking genetic sequences to phenotypic traits, genotype-phenotype maps represent a key layer in biological organization. Their structure modulates the effects of genetic mutations which can contribute to shaping evolutionary outcomes. Recent work based on algorithmic information theory introduced an upper bound on the likelihood of a random genetic mutation causing a transition between two phenotypes, using only the conditional complexity between them. Here we evaluate how well this bound works for a range of genotype-phenotype maps, including a differential equation model for circadian rhythm, a matrix-multiplication model of gene regulatory networks, a developmental model of tooth morphologies for ringed seals, a polyomino-tile shape model of biological self-assembly, and the hydrophobic/polar (HP) lattice protein model. By assessing three levels of predictive performance, we find that the bound provides meaningful estimates of phenotype transition probabilities across these complex systems. These results suggest that transition probabilities can be predicted to some degree directly from the phenotypes themselves, without needing detailed knowledge of the underlying genotype-phenotype map.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.