{"title":"细胞竞争中超级竞争者的身体特征。","authors":"Logan C Carpenter, Shiladitya Banerjee","doi":"10.1098/rsif.2025.0638","DOIUrl":null,"url":null,"abstract":"<p><p>Cell competition is a fitness control mechanism in tissues, where less fit cells are eliminated to maintain tissue homeostasis. Two primary mechanisms of cell competition have been identified: contact-dependent apoptosis and mechanical stress-induced competition. While both operate in tissues, their combined impact on population dynamics is unclear. Here, we present a cell-based computational model that integrates cellular mechanics with proliferation, contact-induced apoptosis and mechanically triggered apoptosis to investigate competition between two distinct cell types. Using this framework, we systematically examine how differences in physical traits-such as stiffness, adhesion and crowding sensitivity-govern competitive outcomes. Our results show that apoptosis rates alone are insufficient to predict cell fate; differences in proliferation and contact inhibition play equally important, context-dependent roles. Notably, we find that increased cell stiffness can confer a fitness advantage, enabling stiffer cells to outcompete softer neighbours. However, cells with reduced stiffness can become 'soft' supercompetitors if they exhibit faster growth and lower sensitivity to crowding. We also demonstrate that colony size critically influences competition: a minimum size is required for mutant expansion, below which elimination becomes stochastic. This stochastic clearance is driven by a protrusive instability in the interface between two cells that promotes invasion of the supercompetitors.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 231","pages":"20250638"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503947/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physical traits of supercompetitors in cell competition.\",\"authors\":\"Logan C Carpenter, Shiladitya Banerjee\",\"doi\":\"10.1098/rsif.2025.0638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell competition is a fitness control mechanism in tissues, where less fit cells are eliminated to maintain tissue homeostasis. Two primary mechanisms of cell competition have been identified: contact-dependent apoptosis and mechanical stress-induced competition. While both operate in tissues, their combined impact on population dynamics is unclear. Here, we present a cell-based computational model that integrates cellular mechanics with proliferation, contact-induced apoptosis and mechanically triggered apoptosis to investigate competition between two distinct cell types. Using this framework, we systematically examine how differences in physical traits-such as stiffness, adhesion and crowding sensitivity-govern competitive outcomes. Our results show that apoptosis rates alone are insufficient to predict cell fate; differences in proliferation and contact inhibition play equally important, context-dependent roles. Notably, we find that increased cell stiffness can confer a fitness advantage, enabling stiffer cells to outcompete softer neighbours. However, cells with reduced stiffness can become 'soft' supercompetitors if they exhibit faster growth and lower sensitivity to crowding. We also demonstrate that colony size critically influences competition: a minimum size is required for mutant expansion, below which elimination becomes stochastic. This stochastic clearance is driven by a protrusive instability in the interface between two cells that promotes invasion of the supercompetitors.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 231\",\"pages\":\"20250638\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503947/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2025.0638\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0638","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Physical traits of supercompetitors in cell competition.
Cell competition is a fitness control mechanism in tissues, where less fit cells are eliminated to maintain tissue homeostasis. Two primary mechanisms of cell competition have been identified: contact-dependent apoptosis and mechanical stress-induced competition. While both operate in tissues, their combined impact on population dynamics is unclear. Here, we present a cell-based computational model that integrates cellular mechanics with proliferation, contact-induced apoptosis and mechanically triggered apoptosis to investigate competition between two distinct cell types. Using this framework, we systematically examine how differences in physical traits-such as stiffness, adhesion and crowding sensitivity-govern competitive outcomes. Our results show that apoptosis rates alone are insufficient to predict cell fate; differences in proliferation and contact inhibition play equally important, context-dependent roles. Notably, we find that increased cell stiffness can confer a fitness advantage, enabling stiffer cells to outcompete softer neighbours. However, cells with reduced stiffness can become 'soft' supercompetitors if they exhibit faster growth and lower sensitivity to crowding. We also demonstrate that colony size critically influences competition: a minimum size is required for mutant expansion, below which elimination becomes stochastic. This stochastic clearance is driven by a protrusive instability in the interface between two cells that promotes invasion of the supercompetitors.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.