骨髓显微镜白血病诊断的频域目标检测网络。

IF 2.1 3区 工程技术 Q2 ANATOMY & MORPHOLOGY
Liye Mei, Xiaofang Song, Hui Shen, Chentao Lian, Suyang Han, Chuan Xu, Huilin Pei, Cheng Lei, Bei Xiong
{"title":"骨髓显微镜白血病诊断的频域目标检测网络。","authors":"Liye Mei, Xiaofang Song, Hui Shen, Chentao Lian, Suyang Han, Chuan Xu, Huilin Pei, Cheng Lei, Bei Xiong","doi":"10.1002/jemt.70081","DOIUrl":null,"url":null,"abstract":"<p><p>Leukemia remains a prevalent hematologic malignancy, and its morphological heterogeneity presents challenges for reliable identification under optical microscopy. To address this, we propose a frequency-domain guided object detection framework to assist leukemia diagnosis using high-resolution bone marrow microscopic images. Specifically, we leverage frequency-based image enhancement and refined feature integration to improve the detection and classification of leukemic cells. By combining spatial and frequency information, our approach captures both fine-grained details and broader semantic patterns critical for accurate diagnosis. We validated our method on clinical microscopic images, achieving high precision in distinguishing acute lymphocytic leukemia (ALL) and chronic lymphocytic leukemia (CLL), with average precision rates of 89.7% and 95.6%, respectively. Our findings demonstrate the value of integrating artificial intelligence with optical microscopy for enhanced diagnostic accuracy in leukemia classification.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-Domain Object Detection Network for Leukemia Diagnosis in Bone Marrow Microscopy.\",\"authors\":\"Liye Mei, Xiaofang Song, Hui Shen, Chentao Lian, Suyang Han, Chuan Xu, Huilin Pei, Cheng Lei, Bei Xiong\",\"doi\":\"10.1002/jemt.70081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leukemia remains a prevalent hematologic malignancy, and its morphological heterogeneity presents challenges for reliable identification under optical microscopy. To address this, we propose a frequency-domain guided object detection framework to assist leukemia diagnosis using high-resolution bone marrow microscopic images. Specifically, we leverage frequency-based image enhancement and refined feature integration to improve the detection and classification of leukemic cells. By combining spatial and frequency information, our approach captures both fine-grained details and broader semantic patterns critical for accurate diagnosis. We validated our method on clinical microscopic images, achieving high precision in distinguishing acute lymphocytic leukemia (ALL) and chronic lymphocytic leukemia (CLL), with average precision rates of 89.7% and 95.6%, respectively. Our findings demonstrate the value of integrating artificial intelligence with optical microscopy for enhanced diagnostic accuracy in leukemia classification.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.70081\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.70081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

白血病仍然是一种常见的血液系统恶性肿瘤,其形态异质性对光学显微镜下的可靠鉴定提出了挑战。为了解决这个问题,我们提出了一个频域引导目标检测框架,以协助白血病诊断使用高分辨率骨髓显微图像。具体来说,我们利用基于频率的图像增强和精细特征集成来改进白血病细胞的检测和分类。通过结合空间和频率信息,我们的方法捕获了细粒度细节和更广泛的语义模式,这对准确诊断至关重要。我们通过临床显微图像验证了我们的方法,对急性淋巴细胞白血病(ALL)和慢性淋巴细胞白血病(CLL)的鉴别准确率很高,平均准确率分别为89.7%和95.6%。我们的研究结果表明,将人工智能与光学显微镜相结合,可以提高白血病分类的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency-Domain Object Detection Network for Leukemia Diagnosis in Bone Marrow Microscopy.

Leukemia remains a prevalent hematologic malignancy, and its morphological heterogeneity presents challenges for reliable identification under optical microscopy. To address this, we propose a frequency-domain guided object detection framework to assist leukemia diagnosis using high-resolution bone marrow microscopic images. Specifically, we leverage frequency-based image enhancement and refined feature integration to improve the detection and classification of leukemic cells. By combining spatial and frequency information, our approach captures both fine-grained details and broader semantic patterns critical for accurate diagnosis. We validated our method on clinical microscopic images, achieving high precision in distinguishing acute lymphocytic leukemia (ALL) and chronic lymphocytic leukemia (CLL), with average precision rates of 89.7% and 95.6%, respectively. Our findings demonstrate the value of integrating artificial intelligence with optical microscopy for enhanced diagnostic accuracy in leukemia classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信