电位分辨电化学发光多重免疫分析,分离阴极和阳极共反应物和预氧化ag掺杂蛋氨酸稳定的金纳米团簇。

IF 6.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Qiao Zhang, Ruoqi Wang, Lei Yu, Yunwei Gao, Dazhong Shen
{"title":"电位分辨电化学发光多重免疫分析,分离阴极和阳极共反应物和预氧化ag掺杂蛋氨酸稳定的金纳米团簇。","authors":"Qiao Zhang, Ruoqi Wang, Lei Yu, Yunwei Gao, Dazhong Shen","doi":"10.1016/j.talanta.2025.128927","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using Ag-doping methionine-stabilized Au nanoclusters (Met-AuAgNCs) with immobilized co-reactant as the anodic ECL tag and nanocomposite of gold nanoparticles/graphene oxide/N, N'-dicaproate sodium-3,4,9,10-perylene-dicarboximide (AuNPs/GO/PDI) as the cathodic ECL tag. Compared with methionine-stabilized Au nanoclusters (Met-AuNCs), the ECL of Met-AuAgNCs was enhanced 5.61-fold. When anodic co-reactant of N,N-diethylethylenediamine (DEDA) was connected to Met-AuAgNCs, the ECL of DEDA-Met-AuAgNCs was 11.3-fold of that of Met-AuAgNCs in DEDA solution due to the shorter charge transfer distance between Met-AuAgNCs and DEDA. After a pre-oxidation at 0.95 V for 60 s, the ECL of DEDA-Met-AuAgNCs was further enhanced by 10.6- and 27.9-fold in the cyclic voltammetric and potential step modes, respectively. The pre-oxidation ECL enhancement was demonstrated by an immobilized co-reactant promoters mechanism. In a potential-resolved ECL-MIA, carbohydrate antigen 125 and carbohydrate antigen 19-9 were adopted as model analytes, with the detection limits of 0.029 and 0.076 mU mL<sup>-1</sup>, respectively. The work provides a proof of concept using self-ECL luminophores with immobilized co-reactant promoters in situ formed for potential-resolved ECL-MIAs with isolated anodic and cathodic co-reactants.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"298 Pt A","pages":"128927"},"PeriodicalIF":6.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential-resolved electrochemiluminescence multiplex immunoassays with isolated cathodic and anodic co-reactants and pre-oxidized Ag-doping methionine-stabilized Au nanoclusters.\",\"authors\":\"Qiao Zhang, Ruoqi Wang, Lei Yu, Yunwei Gao, Dazhong Shen\",\"doi\":\"10.1016/j.talanta.2025.128927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using Ag-doping methionine-stabilized Au nanoclusters (Met-AuAgNCs) with immobilized co-reactant as the anodic ECL tag and nanocomposite of gold nanoparticles/graphene oxide/N, N'-dicaproate sodium-3,4,9,10-perylene-dicarboximide (AuNPs/GO/PDI) as the cathodic ECL tag. Compared with methionine-stabilized Au nanoclusters (Met-AuNCs), the ECL of Met-AuAgNCs was enhanced 5.61-fold. When anodic co-reactant of N,N-diethylethylenediamine (DEDA) was connected to Met-AuAgNCs, the ECL of DEDA-Met-AuAgNCs was 11.3-fold of that of Met-AuAgNCs in DEDA solution due to the shorter charge transfer distance between Met-AuAgNCs and DEDA. After a pre-oxidation at 0.95 V for 60 s, the ECL of DEDA-Met-AuAgNCs was further enhanced by 10.6- and 27.9-fold in the cyclic voltammetric and potential step modes, respectively. The pre-oxidation ECL enhancement was demonstrated by an immobilized co-reactant promoters mechanism. In a potential-resolved ECL-MIA, carbohydrate antigen 125 and carbohydrate antigen 19-9 were adopted as model analytes, with the detection limits of 0.029 and 0.076 mU mL<sup>-1</sup>, respectively. The work provides a proof of concept using self-ECL luminophores with immobilized co-reactant promoters in situ formed for potential-resolved ECL-MIAs with isolated anodic and cathodic co-reactants.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"298 Pt A\",\"pages\":\"128927\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128927\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128927","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,开发了一种电位分辨电化学发光(ECL)多重免疫测定(MIA),使用银掺杂的甲硫氨酸稳定金纳米团簇(Met-AuAgNCs)作为阳极ECL标记,并使用固定的助反应物作为金纳米颗粒/氧化石墨烯/N, N'-二己二酸钠-3,4,9,10-苝-二酰亚胺(AuNPs/GO/PDI)作为阴极ECL标记。与蛋氨酸稳定金纳米团簇(Met-AuNCs)相比,met - auagnc的ECL提高了5.61倍。将N,N-二乙基乙二胺(DEDA)的阳极共反应物与Met-AuAgNCs连接时,由于Met-AuAgNCs与DEDA之间的电荷转移距离较短,其ECL是DEDA溶液中Met-AuAgNCs的11.3倍。在0.95 V预氧化60 s后,da - met - auagncs的ECL在循环伏安和电位阶跃模式下分别提高了10.6倍和27.9倍。用固定化助反应剂促进剂机理证明了预氧化ECL的增强作用。在潜在分辨的ECL-MIA中,碳水化合物抗原125和碳水化合物抗原19-9作为模型分析物,检出限分别为0.029和0.076 mU mL-1。这项工作提供了一个概念的证明,使用具有固定共反应物启动子的自ecl发光团在原位形成,用于具有隔离的阳极和阴极共反应物的电位分辨ecl - mia。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential-resolved electrochemiluminescence multiplex immunoassays with isolated cathodic and anodic co-reactants and pre-oxidized Ag-doping methionine-stabilized Au nanoclusters.

In this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using Ag-doping methionine-stabilized Au nanoclusters (Met-AuAgNCs) with immobilized co-reactant as the anodic ECL tag and nanocomposite of gold nanoparticles/graphene oxide/N, N'-dicaproate sodium-3,4,9,10-perylene-dicarboximide (AuNPs/GO/PDI) as the cathodic ECL tag. Compared with methionine-stabilized Au nanoclusters (Met-AuNCs), the ECL of Met-AuAgNCs was enhanced 5.61-fold. When anodic co-reactant of N,N-diethylethylenediamine (DEDA) was connected to Met-AuAgNCs, the ECL of DEDA-Met-AuAgNCs was 11.3-fold of that of Met-AuAgNCs in DEDA solution due to the shorter charge transfer distance between Met-AuAgNCs and DEDA. After a pre-oxidation at 0.95 V for 60 s, the ECL of DEDA-Met-AuAgNCs was further enhanced by 10.6- and 27.9-fold in the cyclic voltammetric and potential step modes, respectively. The pre-oxidation ECL enhancement was demonstrated by an immobilized co-reactant promoters mechanism. In a potential-resolved ECL-MIA, carbohydrate antigen 125 and carbohydrate antigen 19-9 were adopted as model analytes, with the detection limits of 0.029 and 0.076 mU mL-1, respectively. The work provides a proof of concept using self-ECL luminophores with immobilized co-reactant promoters in situ formed for potential-resolved ECL-MIAs with isolated anodic and cathodic co-reactants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信