浮游植物与微/纳米塑料和重金属污染的相互作用。

IF 11.7 1区 生物学 Q1 BIOLOGY
Ammar Alowaisy, Mintallah Mousa A Allouzi, Wen Yi Chia, Andres Philip Mayol, Malinee Sriariyanun, Pau Loke Show
{"title":"浮游植物与微/纳米塑料和重金属污染的相互作用。","authors":"Ammar Alowaisy, Mintallah Mousa A Allouzi, Wen Yi Chia, Andres Philip Mayol, Malinee Sriariyanun, Pau Loke Show","doi":"10.1111/brv.70071","DOIUrl":null,"url":null,"abstract":"<p><p>Micro/nanoplastics (MNPs) have attracted the attention of researchers because of their toxicity and increasing abundance in natural ecosystems, especially in marine ecosystems. Similarly, heavy metals pose a significant threat to living organisms due to their toxicity. Waste generated by anthropogenic activities, including heavy metals, MNPs, and other contaminants, is often discharged into water bodies or ends up there unintentionally. Recently, phytoplankton have shown promising results in water treatment for these pollutants, with an ability to adapt to and overcome the toxicity of MNPs and heavy metals, depending on the concentration of these contaminants. Microalgae can remove heavy metals through biosorption, bioaccumulation, and biotransformation, sometimes converting them into less toxic forms, making them useful for bioremediation applications. Additionally, microalgae can aggregate MNPs via adsorption, thus reducing their concentration in the medium over time. However, beyond a threshold concentration, these pollutants can cause lethal damage to microalgae, and it is necessary to limit the simultaneous exposure of microalgae to multiple pollutants as they can interact synergistically. Toxic effects of heavy metals and MNPs include inhibited photosynthesis, decreased population growth, cell deformation, as well as altered enzymatic and genetic activities. The relationship and interactions between MNPs, heavy metals, and phytoplankton are explored herein to deepen our understanding and enable better utilization of phytoplankton in bioremediation of aquatic ecosystems.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions between phytoplankton species and micro/nano-plastics and heavy metal contamination.\",\"authors\":\"Ammar Alowaisy, Mintallah Mousa A Allouzi, Wen Yi Chia, Andres Philip Mayol, Malinee Sriariyanun, Pau Loke Show\",\"doi\":\"10.1111/brv.70071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micro/nanoplastics (MNPs) have attracted the attention of researchers because of their toxicity and increasing abundance in natural ecosystems, especially in marine ecosystems. Similarly, heavy metals pose a significant threat to living organisms due to their toxicity. Waste generated by anthropogenic activities, including heavy metals, MNPs, and other contaminants, is often discharged into water bodies or ends up there unintentionally. Recently, phytoplankton have shown promising results in water treatment for these pollutants, with an ability to adapt to and overcome the toxicity of MNPs and heavy metals, depending on the concentration of these contaminants. Microalgae can remove heavy metals through biosorption, bioaccumulation, and biotransformation, sometimes converting them into less toxic forms, making them useful for bioremediation applications. Additionally, microalgae can aggregate MNPs via adsorption, thus reducing their concentration in the medium over time. However, beyond a threshold concentration, these pollutants can cause lethal damage to microalgae, and it is necessary to limit the simultaneous exposure of microalgae to multiple pollutants as they can interact synergistically. Toxic effects of heavy metals and MNPs include inhibited photosynthesis, decreased population growth, cell deformation, as well as altered enzymatic and genetic activities. The relationship and interactions between MNPs, heavy metals, and phytoplankton are explored herein to deepen our understanding and enable better utilization of phytoplankton in bioremediation of aquatic ecosystems.</p>\",\"PeriodicalId\":133,\"journal\":{\"name\":\"Biological Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/brv.70071\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70071","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微/纳米塑料(MNPs)因其毒性和在自然生态系统特别是海洋生态系统中的丰度不断增加而引起了研究人员的关注。同样,重金属因其毒性对生物体构成重大威胁。由人为活动产生的废物,包括重金属、MNPs和其他污染物,经常被排放到水体中或无意中最终进入水体。最近,浮游植物在这些污染物的水处理中显示出有希望的结果,它们有能力适应和克服MNPs和重金属的毒性,具体取决于这些污染物的浓度。微藻可以通过生物吸附、生物积累和生物转化去除重金属,有时将其转化为毒性较小的形式,使其可用于生物修复应用。此外,微藻可以通过吸附聚集MNPs,从而随着时间的推移降低其在介质中的浓度。然而,超过阈值浓度,这些污染物会对微藻造成致命伤害,有必要限制微藻同时暴露于多种污染物中,因为它们可以协同作用。重金属和MNPs的毒性作用包括抑制光合作用、减少种群生长、细胞变形以及改变酶和遗传活性。本文探讨了MNPs、重金属和浮游植物之间的关系和相互作用,以加深我们对浮游植物在水生生态系统生物修复中的认识和利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactions between phytoplankton species and micro/nano-plastics and heavy metal contamination.

Micro/nanoplastics (MNPs) have attracted the attention of researchers because of their toxicity and increasing abundance in natural ecosystems, especially in marine ecosystems. Similarly, heavy metals pose a significant threat to living organisms due to their toxicity. Waste generated by anthropogenic activities, including heavy metals, MNPs, and other contaminants, is often discharged into water bodies or ends up there unintentionally. Recently, phytoplankton have shown promising results in water treatment for these pollutants, with an ability to adapt to and overcome the toxicity of MNPs and heavy metals, depending on the concentration of these contaminants. Microalgae can remove heavy metals through biosorption, bioaccumulation, and biotransformation, sometimes converting them into less toxic forms, making them useful for bioremediation applications. Additionally, microalgae can aggregate MNPs via adsorption, thus reducing their concentration in the medium over time. However, beyond a threshold concentration, these pollutants can cause lethal damage to microalgae, and it is necessary to limit the simultaneous exposure of microalgae to multiple pollutants as they can interact synergistically. Toxic effects of heavy metals and MNPs include inhibited photosynthesis, decreased population growth, cell deformation, as well as altered enzymatic and genetic activities. The relationship and interactions between MNPs, heavy metals, and phytoplankton are explored herein to deepen our understanding and enable better utilization of phytoplankton in bioremediation of aquatic ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Reviews
Biological Reviews 生物-生物学
CiteScore
21.30
自引率
2.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly. The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions. The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field. Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信