{"title":"从上转换多模态发光温度计到基于Er3+,Yb3+发射的比例视觉功率密度计。","authors":"Anam Javaid, Maja Szymczak, Lukasz Marciniak","doi":"10.1039/d5mh01369k","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates that thermally induced variations in the spectroscopic properties of Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> can be effectively harnessed for multimodal remote temperature sensing. As shown, Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> supports multiple ratiometric sensing modes based on the intensity ratios of (i) <sup>2</sup>H<sub>11/2</sub> → <sup>4</sup>I<sub>15/2</sub> and <sup>4</sup>S<sub>3/2</sub> → <sup>4</sup>I<sub>15/2</sub>; (ii) <sup>2</sup>H<sub>9/2</sub> → <sup>4</sup>I<sub>13/2</sub> and <sup>4</sup>S<sub>3/2</sub> → <sup>4</sup>I<sub>15/2</sub>; and (iii) green-to-red emission intensity ratio, achieving maximum relative sensitivities of 2.8% K<sup>-1</sup>, 3% K<sup>-1</sup>, and 1.8% K<sup>-1</sup>, respectively. The synergy between thermal changes observed in the green-to-red emission intensity ratio of Er<sup>3+</sup> ions, combined with the efficient optical heating of Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> at elevated Yb<sup>3+</sup> concentrations enables the development of a visual optical power density sensor, exhibiting relative sensitivities of <i>S</i><sub>R<i>x</i></sub> = 1.0% W<sup>-1</sup> cm<sup>2</sup> and <i>S</i><sub>R<i>y</i></sub> = 0.9% W<sup>-1</sup> cm<sup>2</sup> at 15 W cm<sup>-2</sup> when quantified using CIE 1931 chromaticity coordinates. To the best of our knowledge, this is the first report of a visual luminescent optical power density sensor. Furthermore, it was demonstrated that Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> can be successfully applied for two-dimensional imaging of optical power density, thereby enabling spatial visualization of power distribution within an illuminated field.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From the up-converting multimodal luminescent thermometer to ratiometric visual power density meter based on Er<sup>3+</sup>,Yb<sup>3+</sup> emission.\",\"authors\":\"Anam Javaid, Maja Szymczak, Lukasz Marciniak\",\"doi\":\"10.1039/d5mh01369k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study demonstrates that thermally induced variations in the spectroscopic properties of Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> can be effectively harnessed for multimodal remote temperature sensing. As shown, Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> supports multiple ratiometric sensing modes based on the intensity ratios of (i) <sup>2</sup>H<sub>11/2</sub> → <sup>4</sup>I<sub>15/2</sub> and <sup>4</sup>S<sub>3/2</sub> → <sup>4</sup>I<sub>15/2</sub>; (ii) <sup>2</sup>H<sub>9/2</sub> → <sup>4</sup>I<sub>13/2</sub> and <sup>4</sup>S<sub>3/2</sub> → <sup>4</sup>I<sub>15/2</sub>; and (iii) green-to-red emission intensity ratio, achieving maximum relative sensitivities of 2.8% K<sup>-1</sup>, 3% K<sup>-1</sup>, and 1.8% K<sup>-1</sup>, respectively. The synergy between thermal changes observed in the green-to-red emission intensity ratio of Er<sup>3+</sup> ions, combined with the efficient optical heating of Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> at elevated Yb<sup>3+</sup> concentrations enables the development of a visual optical power density sensor, exhibiting relative sensitivities of <i>S</i><sub>R<i>x</i></sub> = 1.0% W<sup>-1</sup> cm<sup>2</sup> and <i>S</i><sub>R<i>y</i></sub> = 0.9% W<sup>-1</sup> cm<sup>2</sup> at 15 W cm<sup>-2</sup> when quantified using CIE 1931 chromaticity coordinates. To the best of our knowledge, this is the first report of a visual luminescent optical power density sensor. Furthermore, it was demonstrated that Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> can be successfully applied for two-dimensional imaging of optical power density, thereby enabling spatial visualization of power distribution within an illuminated field.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01369k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01369k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
From the up-converting multimodal luminescent thermometer to ratiometric visual power density meter based on Er3+,Yb3+ emission.
This study demonstrates that thermally induced variations in the spectroscopic properties of Na3Sc2(PO4)3:Er3+,Yb3+ can be effectively harnessed for multimodal remote temperature sensing. As shown, Na3Sc2(PO4)3:Er3+,Yb3+ supports multiple ratiometric sensing modes based on the intensity ratios of (i) 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2; (ii) 2H9/2 → 4I13/2 and 4S3/2 → 4I15/2; and (iii) green-to-red emission intensity ratio, achieving maximum relative sensitivities of 2.8% K-1, 3% K-1, and 1.8% K-1, respectively. The synergy between thermal changes observed in the green-to-red emission intensity ratio of Er3+ ions, combined with the efficient optical heating of Na3Sc2(PO4)3:Er3+,Yb3+ at elevated Yb3+ concentrations enables the development of a visual optical power density sensor, exhibiting relative sensitivities of SRx = 1.0% W-1 cm2 and SRy = 0.9% W-1 cm2 at 15 W cm-2 when quantified using CIE 1931 chromaticity coordinates. To the best of our knowledge, this is the first report of a visual luminescent optical power density sensor. Furthermore, it was demonstrated that Na3Sc2(PO4)3:Er3+,Yb3+ can be successfully applied for two-dimensional imaging of optical power density, thereby enabling spatial visualization of power distribution within an illuminated field.