求解湍流强迫和自然对流问题的控制体积自由元法

IF 1.8 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jin-Xing Ding, Hua-Yu Liu, Xiao-Wei Gao
{"title":"求解湍流强迫和自然对流问题的控制体积自由元法","authors":"Jin-Xing Ding,&nbsp;Hua-Yu Liu,&nbsp;Xiao-Wei Gao","doi":"10.1002/fld.5403","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, the control volume free element method (CVFrEM) is proposed for turbulent forced and natural convection problems. In the proposed method, the control volume at each collocation node is generated locally within the free element formed for the node, based on which the governing equations are discretized using the Green-Gauss formula. In contrast to conventional segregated SIMPLE-like algorithms, the newly proposed method achieves fully coupled velocity and pressure, thereby significantly improving convergence characteristics. The computational framework has been validated through the turbulent natural and forced convection problems involving conjugate heat transfer. Comprehensive verification has been carried out by systematically comparing numerical results with benchmark solutions from the literature and experimental measurements. Numerical experiments on several test cases demonstrate the computational efficiency of the proposed method and its numerical robustness.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 11","pages":"1397-1409"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control Volume Free Element Method for Solving Turbulent Forced and Natural Convection Problems\",\"authors\":\"Jin-Xing Ding,&nbsp;Hua-Yu Liu,&nbsp;Xiao-Wei Gao\",\"doi\":\"10.1002/fld.5403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this work, the control volume free element method (CVFrEM) is proposed for turbulent forced and natural convection problems. In the proposed method, the control volume at each collocation node is generated locally within the free element formed for the node, based on which the governing equations are discretized using the Green-Gauss formula. In contrast to conventional segregated SIMPLE-like algorithms, the newly proposed method achieves fully coupled velocity and pressure, thereby significantly improving convergence characteristics. The computational framework has been validated through the turbulent natural and forced convection problems involving conjugate heat transfer. Comprehensive verification has been carried out by systematically comparing numerical results with benchmark solutions from the literature and experimental measurements. Numerical experiments on several test cases demonstrate the computational efficiency of the proposed method and its numerical robustness.</p>\\n </div>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"97 11\",\"pages\":\"1397-1409\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5403\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5403","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了紊流强迫对流和自然对流问题的控制体积自由元法。该方法在节点形成的自由单元内局部生成每个节点的控制体积,并在此基础上利用格林-高斯公式离散控制方程。与传统的分离类simple算法相比,该方法实现了速度和压力的完全耦合,从而显著提高了收敛特性。通过涉及共轭传热的湍流自然对流和强迫对流问题验证了该计算框架。通过系统地将数值结果与文献和实验测量的基准解进行比较,进行了全面的验证。几个测试用例的数值实验证明了该方法的计算效率和数值鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Control Volume Free Element Method for Solving Turbulent Forced and Natural Convection Problems

Control Volume Free Element Method for Solving Turbulent Forced and Natural Convection Problems

In this work, the control volume free element method (CVFrEM) is proposed for turbulent forced and natural convection problems. In the proposed method, the control volume at each collocation node is generated locally within the free element formed for the node, based on which the governing equations are discretized using the Green-Gauss formula. In contrast to conventional segregated SIMPLE-like algorithms, the newly proposed method achieves fully coupled velocity and pressure, thereby significantly improving convergence characteristics. The computational framework has been validated through the turbulent natural and forced convection problems involving conjugate heat transfer. Comprehensive verification has been carried out by systematically comparing numerical results with benchmark solutions from the literature and experimental measurements. Numerical experiments on several test cases demonstrate the computational efficiency of the proposed method and its numerical robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信