Gayathri Dev Ammini, Lakshani J. Weerarathna, Prof. Tanja Junkers
{"title":"连续流动嵌段共聚物纳米聚集体的合成及其流动透析纯化","authors":"Gayathri Dev Ammini, Lakshani J. Weerarathna, Prof. Tanja Junkers","doi":"10.1002/cmtd.202500025","DOIUrl":null,"url":null,"abstract":"<p>Block copolymer self-assembly into nanoparticles of defined size and morphology is facilitated via continuous flow synthesis methods. Using flow, nanoparticles are obtained at higher rates, with improved consistency, under greener conditions and with significantly reduced batch-to-batch variability when compared to traditional batch processes. The methodology to formulate block copolymers in a flow setup is described, and design strategies explained. Further, the purification of the obtained particles via flow dialysis is described, marking a second important step in synthesis, which when performed in batch is time and resource intensive. The described methods open the pathway for reproducible block copolymer nanoparticle synthesis, and towards automation and high-throughput screening of materials.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"5 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202500025","citationCount":"0","resultStr":"{\"title\":\"Continuous Flow Block Copolymer Nanoaggregate Synthesis and Their Flow Dialysis Purification\",\"authors\":\"Gayathri Dev Ammini, Lakshani J. Weerarathna, Prof. Tanja Junkers\",\"doi\":\"10.1002/cmtd.202500025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Block copolymer self-assembly into nanoparticles of defined size and morphology is facilitated via continuous flow synthesis methods. Using flow, nanoparticles are obtained at higher rates, with improved consistency, under greener conditions and with significantly reduced batch-to-batch variability when compared to traditional batch processes. The methodology to formulate block copolymers in a flow setup is described, and design strategies explained. Further, the purification of the obtained particles via flow dialysis is described, marking a second important step in synthesis, which when performed in batch is time and resource intensive. The described methods open the pathway for reproducible block copolymer nanoparticle synthesis, and towards automation and high-throughput screening of materials.</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":\"5 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202500025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202500025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202500025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Continuous Flow Block Copolymer Nanoaggregate Synthesis and Their Flow Dialysis Purification
Block copolymer self-assembly into nanoparticles of defined size and morphology is facilitated via continuous flow synthesis methods. Using flow, nanoparticles are obtained at higher rates, with improved consistency, under greener conditions and with significantly reduced batch-to-batch variability when compared to traditional batch processes. The methodology to formulate block copolymers in a flow setup is described, and design strategies explained. Further, the purification of the obtained particles via flow dialysis is described, marking a second important step in synthesis, which when performed in batch is time and resource intensive. The described methods open the pathway for reproducible block copolymer nanoparticle synthesis, and towards automation and high-throughput screening of materials.