Y. S. Madansure, Pravin K. Gaikwad, Vishnu S. Shinde, S. R. Manegopale, Sagar E. Shirsath, S. K. Gurav
{"title":"铈(Ce3+)取代对Co0.9Fe2.1-xCexO4纳米铁氧体结构和频率相关电学性能的影响","authors":"Y. S. Madansure, Pravin K. Gaikwad, Vishnu S. Shinde, S. R. Manegopale, Sagar E. Shirsath, S. K. Gurav","doi":"10.1002/apxr.202500089","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of rare-earth cerium (Ce<sup>3+</sup>) substitution on the structural and electrical properties of cobalt-rich nanoferrites. A series of nanoparticles with the nominal composition Co<sub>0.9</sub>Fe<sub>2.1-</sub><i><sub>x</sub></i>Ce<i><sub>x</sub></i>O<sub>4</sub> (where <i>x</i> = 0.0, 0.025, 0.05, 0.075, and 0.1) are synthesized via the sol-gel auto-combustion method. X-ray diffraction (XRD) analysis confirms the formation of a single-phase cubic spinel structure for all compositions, with the lattice parameter systematically increasing from 8.38 to 8.42 Å with rising cerium content, indicating the successful incorporation of the larger Ce<sup>3+</sup> ions into the lattice. The crystallite size, estimated using the Debye-Scherrer formula, is found to be in the nanometer range. Electron microscopy studies (SEM and TEM) reveal agglomerated, quasi-spherical nanoparticles. The frequency-dependent electrical properties are analyzed at room temperature. Results show a systematic decrease in AC conductivity, dielectric constant (ε'), and dielectric loss tangent (tan δ) with increasing cerium concentration. This behavior is attributed to the substitution of Fe<sup>3+</sup> ions by Ce<sup>3+</sup> ions at the octahedral sites, which limits the hopping mechanism between Fe<sup>2+</sup> and Fe<sup>3+</sup> ions. The significant reduction in dielectric loss highlights the potential of these cerium-doped nanoferrites for high-frequency device applications.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500089","citationCount":"0","resultStr":"{\"title\":\"Influence of Cerium (Ce3+) Substitution on the Structural and Frequency-Dependent Electrical Properties of Co0.9Fe2.1-xCexO4 Nanoferrites\",\"authors\":\"Y. S. Madansure, Pravin K. Gaikwad, Vishnu S. Shinde, S. R. Manegopale, Sagar E. Shirsath, S. K. Gurav\",\"doi\":\"10.1002/apxr.202500089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of rare-earth cerium (Ce<sup>3+</sup>) substitution on the structural and electrical properties of cobalt-rich nanoferrites. A series of nanoparticles with the nominal composition Co<sub>0.9</sub>Fe<sub>2.1-</sub><i><sub>x</sub></i>Ce<i><sub>x</sub></i>O<sub>4</sub> (where <i>x</i> = 0.0, 0.025, 0.05, 0.075, and 0.1) are synthesized via the sol-gel auto-combustion method. X-ray diffraction (XRD) analysis confirms the formation of a single-phase cubic spinel structure for all compositions, with the lattice parameter systematically increasing from 8.38 to 8.42 Å with rising cerium content, indicating the successful incorporation of the larger Ce<sup>3+</sup> ions into the lattice. The crystallite size, estimated using the Debye-Scherrer formula, is found to be in the nanometer range. Electron microscopy studies (SEM and TEM) reveal agglomerated, quasi-spherical nanoparticles. The frequency-dependent electrical properties are analyzed at room temperature. Results show a systematic decrease in AC conductivity, dielectric constant (ε'), and dielectric loss tangent (tan δ) with increasing cerium concentration. This behavior is attributed to the substitution of Fe<sup>3+</sup> ions by Ce<sup>3+</sup> ions at the octahedral sites, which limits the hopping mechanism between Fe<sup>2+</sup> and Fe<sup>3+</sup> ions. The significant reduction in dielectric loss highlights the potential of these cerium-doped nanoferrites for high-frequency device applications.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 10\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500089\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Cerium (Ce3+) Substitution on the Structural and Frequency-Dependent Electrical Properties of Co0.9Fe2.1-xCexO4 Nanoferrites
This study investigates the impact of rare-earth cerium (Ce3+) substitution on the structural and electrical properties of cobalt-rich nanoferrites. A series of nanoparticles with the nominal composition Co0.9Fe2.1-xCexO4 (where x = 0.0, 0.025, 0.05, 0.075, and 0.1) are synthesized via the sol-gel auto-combustion method. X-ray diffraction (XRD) analysis confirms the formation of a single-phase cubic spinel structure for all compositions, with the lattice parameter systematically increasing from 8.38 to 8.42 Å with rising cerium content, indicating the successful incorporation of the larger Ce3+ ions into the lattice. The crystallite size, estimated using the Debye-Scherrer formula, is found to be in the nanometer range. Electron microscopy studies (SEM and TEM) reveal agglomerated, quasi-spherical nanoparticles. The frequency-dependent electrical properties are analyzed at room temperature. Results show a systematic decrease in AC conductivity, dielectric constant (ε'), and dielectric loss tangent (tan δ) with increasing cerium concentration. This behavior is attributed to the substitution of Fe3+ ions by Ce3+ ions at the octahedral sites, which limits the hopping mechanism between Fe2+ and Fe3+ ions. The significant reduction in dielectric loss highlights the potential of these cerium-doped nanoferrites for high-frequency device applications.