利用微气隙偶极耦合sw提高基于mssw的内联干扰器件的隔离率

IF 2.8
Md Shamim Sarker, E M K Ikball Ahamed, Hiroyasu Yamahara, Zhiqiang Liao, Siyi Tang, Haining Li, Sankar Ganesh Ramaraj, Munetoshi Seki, Hitoshi Tabata
{"title":"利用微气隙偶极耦合sw提高基于mssw的内联干扰器件的隔离率","authors":"Md Shamim Sarker,&nbsp;E M K Ikball Ahamed,&nbsp;Hiroyasu Yamahara,&nbsp;Zhiqiang Liao,&nbsp;Siyi Tang,&nbsp;Haining Li,&nbsp;Sankar Ganesh Ramaraj,&nbsp;Munetoshi Seki,&nbsp;Hitoshi Tabata","doi":"10.1002/apxr.202500071","DOIUrl":null,"url":null,"abstract":"<p>Control of spin-wave (SW) propagation is demonstrated by introducing a micro-air gap into a nanometer-thick yttrium iron garnet (Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, YIG) microstructure. SWs traverse the gap with reduced intensity following an exponential–linear decay with air gap length, attributed to coupling between incident and reflected dipolar SWs via a time-varying stray magnetic field. By tuning gap length, SW intensity is balanced to address nonreciprocity in counterpropagating magnetostatic surface SWs within an inline interference device. Introducing asymmetric gaps equalizes signal amplitudes and enhances the isolation ratio from 16 to 50 dB, the highest reported for such devices. This approach is applicable to SW-based logic gates and magnetic sensors, with the steep interference profile enabling high sensitivity at room temperature. The air gap also modifies SW transport properties, doubling group velocity from ≈2 km s<sup>−1</sup> in the reference device to 4.4 km s<sup>−1</sup> for a 66 µm gap at 22 mT, and inducing phase shifts of up to ≈37° for a 1 µm gap change (2–3 µm). These results establish a practical route to high-isolation magnonic interference devices and provide tunable control of group velocity and phase, enabling reconfigurable components such as delay lines and microwave phase shifters.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500071","citationCount":"0","resultStr":"{\"title\":\"Improved Isolation Ratio in MSSWs-Based Inline Interference Device Using Dipolar-Coupled SWs Across a Micro-Air Gap\",\"authors\":\"Md Shamim Sarker,&nbsp;E M K Ikball Ahamed,&nbsp;Hiroyasu Yamahara,&nbsp;Zhiqiang Liao,&nbsp;Siyi Tang,&nbsp;Haining Li,&nbsp;Sankar Ganesh Ramaraj,&nbsp;Munetoshi Seki,&nbsp;Hitoshi Tabata\",\"doi\":\"10.1002/apxr.202500071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Control of spin-wave (SW) propagation is demonstrated by introducing a micro-air gap into a nanometer-thick yttrium iron garnet (Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, YIG) microstructure. SWs traverse the gap with reduced intensity following an exponential–linear decay with air gap length, attributed to coupling between incident and reflected dipolar SWs via a time-varying stray magnetic field. By tuning gap length, SW intensity is balanced to address nonreciprocity in counterpropagating magnetostatic surface SWs within an inline interference device. Introducing asymmetric gaps equalizes signal amplitudes and enhances the isolation ratio from 16 to 50 dB, the highest reported for such devices. This approach is applicable to SW-based logic gates and magnetic sensors, with the steep interference profile enabling high sensitivity at room temperature. The air gap also modifies SW transport properties, doubling group velocity from ≈2 km s<sup>−1</sup> in the reference device to 4.4 km s<sup>−1</sup> for a 66 µm gap at 22 mT, and inducing phase shifts of up to ≈37° for a 1 µm gap change (2–3 µm). These results establish a practical route to high-isolation magnonic interference devices and provide tunable control of group velocity and phase, enabling reconfigurable components such as delay lines and microwave phase shifters.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 10\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过在纳米厚钇铁石榴石(Y3Fe5O12, YIG)微观结构中引入微气隙来控制自旋波(SW)的传播。随着气隙长度的指数线性衰减,SWs穿过气隙的强度降低,这归因于入射和反射偶极SWs通过时变杂散磁场之间的耦合。通过调整间隙长度,可以平衡SW强度,以解决在线干涉装置内反传播静磁表面SW的非互易性问题。引入不对称间隙可以均衡信号幅度,并将隔离比从16 dB提高到50 dB,这是此类设备中报道的最高隔离比。这种方法适用于基于sw的逻辑门和磁传感器,具有陡峭的干扰曲线,在室温下具有高灵敏度。气隙还改变了SW输运特性,使参考器件中的群速度从≈2 km s - 1翻倍到22 mT时66 μ m隙中的4.4 km s - 1,并且在1 μ m隙变化(2 - 3 μ m)时诱导相移高达≈37°。这些结果为高隔离磁干涉器件建立了一条实用的途径,并提供了对群速度和相位的可调控制,从而实现了延迟线和微波移相器等可重构组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved Isolation Ratio in MSSWs-Based Inline Interference Device Using Dipolar-Coupled SWs Across a Micro-Air Gap

Improved Isolation Ratio in MSSWs-Based Inline Interference Device Using Dipolar-Coupled SWs Across a Micro-Air Gap

Control of spin-wave (SW) propagation is demonstrated by introducing a micro-air gap into a nanometer-thick yttrium iron garnet (Y3Fe5O12, YIG) microstructure. SWs traverse the gap with reduced intensity following an exponential–linear decay with air gap length, attributed to coupling between incident and reflected dipolar SWs via a time-varying stray magnetic field. By tuning gap length, SW intensity is balanced to address nonreciprocity in counterpropagating magnetostatic surface SWs within an inline interference device. Introducing asymmetric gaps equalizes signal amplitudes and enhances the isolation ratio from 16 to 50 dB, the highest reported for such devices. This approach is applicable to SW-based logic gates and magnetic sensors, with the steep interference profile enabling high sensitivity at room temperature. The air gap also modifies SW transport properties, doubling group velocity from ≈2 km s−1 in the reference device to 4.4 km s−1 for a 66 µm gap at 22 mT, and inducing phase shifts of up to ≈37° for a 1 µm gap change (2–3 µm). These results establish a practical route to high-isolation magnonic interference devices and provide tunable control of group velocity and phase, enabling reconfigurable components such as delay lines and microwave phase shifters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信