石墨烯/铁磁体异质结构的抗空气氧化钛封盖

IF 2.8
Carlo Alberto Brondin, Iulia Cojocariu, Antonio Caretta, Andrea Locatelli, Stefano Bonetti, Tevfik Onur Menteş, Matteo Jugovac
{"title":"石墨烯/铁磁体异质结构的抗空气氧化钛封盖","authors":"Carlo Alberto Brondin,&nbsp;Iulia Cojocariu,&nbsp;Antonio Caretta,&nbsp;Andrea Locatelli,&nbsp;Stefano Bonetti,&nbsp;Tevfik Onur Menteş,&nbsp;Matteo Jugovac","doi":"10.1002/apxr.202500066","DOIUrl":null,"url":null,"abstract":"<p>Graphene/ferromagnet interfaces have widely demonstrated the capability to host peculiar magnetic and electronic properties relevant for spintronic devices. In principle, besides strengthening perpendicular magnetic anisotropy (PMA) and sizable Dzyaloshinskii–Moriya interaction (DMI), graphene provides an additional advantage by acting as a protective layer against oxidation of the underlying metal film. However, the structural imperfections of graphene, often resulting from its growth conditions, can facilitate intercalation, which can compromise the underlying ferromagnetic layer. To address this issue, here, the use of a titania capping layer as a protective barrier for a heterostructure consisting of monolayer graphene grown on a thin cobalt film is proposed. The results demonstrate that the titanium oxide layer does not alter the properties of the interface, as confirmed by X-ray photoemission spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) imaging. Furthermore, magneto-optic Kerr effect (MOKE) measurements reveal that the interface's magnetic properties remain stable after prolonged exposure to ambient conditions. Absorption profile simulations show that the capping layer is transparent to visible wavelengths, demonstrating its capability to enable optical studies of atomic interfacial effects without the need for an ultra-high vacuum (UHV) environment. These findings position titanium oxide as a robust, non-invasive capping material for graphene-based spintronic heterostructures.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500066","citationCount":"0","resultStr":"{\"title\":\"Air-Resistant Titanium Oxide Capping for Graphene/Ferromagnet Heterostructures\",\"authors\":\"Carlo Alberto Brondin,&nbsp;Iulia Cojocariu,&nbsp;Antonio Caretta,&nbsp;Andrea Locatelli,&nbsp;Stefano Bonetti,&nbsp;Tevfik Onur Menteş,&nbsp;Matteo Jugovac\",\"doi\":\"10.1002/apxr.202500066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graphene/ferromagnet interfaces have widely demonstrated the capability to host peculiar magnetic and electronic properties relevant for spintronic devices. In principle, besides strengthening perpendicular magnetic anisotropy (PMA) and sizable Dzyaloshinskii–Moriya interaction (DMI), graphene provides an additional advantage by acting as a protective layer against oxidation of the underlying metal film. However, the structural imperfections of graphene, often resulting from its growth conditions, can facilitate intercalation, which can compromise the underlying ferromagnetic layer. To address this issue, here, the use of a titania capping layer as a protective barrier for a heterostructure consisting of monolayer graphene grown on a thin cobalt film is proposed. The results demonstrate that the titanium oxide layer does not alter the properties of the interface, as confirmed by X-ray photoemission spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) imaging. Furthermore, magneto-optic Kerr effect (MOKE) measurements reveal that the interface's magnetic properties remain stable after prolonged exposure to ambient conditions. Absorption profile simulations show that the capping layer is transparent to visible wavelengths, demonstrating its capability to enable optical studies of atomic interfacial effects without the need for an ultra-high vacuum (UHV) environment. These findings position titanium oxide as a robust, non-invasive capping material for graphene-based spintronic heterostructures.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 10\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯/铁磁体界面已被广泛证明具有与自旋电子器件相关的特殊磁性和电子特性的能力。原则上,除了增强垂直磁各向异性(PMA)和相当大的Dzyaloshinskii-Moriya相互作用(DMI)外,石墨烯还提供了一个额外的优势,即作为保护层防止底层金属膜氧化。然而,石墨烯的结构缺陷,通常是由其生长条件造成的,可以促进嵌入,这可能会损害底层的铁磁层。为了解决这个问题,本文提出了使用二氧化钛封盖层作为在薄钴膜上生长的由单层石墨烯组成的异质结构的保护屏障。结果表明,通过x射线光发射光谱(XPS)和x射线磁圆二色性(XMCD)成像证实,氧化钛层没有改变界面的性质。此外,磁光克尔效应(MOKE)测量表明,在长时间暴露于环境条件后,界面的磁性能保持稳定。吸收剖面模拟表明,封盖层对可见波长是透明的,证明了其无需超高真空(UHV)环境就可以进行原子界面效应的光学研究的能力。这些发现将氧化钛定位为石墨烯基自旋电子异质结构的坚固、非侵入式封盖材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Air-Resistant Titanium Oxide Capping for Graphene/Ferromagnet Heterostructures

Air-Resistant Titanium Oxide Capping for Graphene/Ferromagnet Heterostructures

Graphene/ferromagnet interfaces have widely demonstrated the capability to host peculiar magnetic and electronic properties relevant for spintronic devices. In principle, besides strengthening perpendicular magnetic anisotropy (PMA) and sizable Dzyaloshinskii–Moriya interaction (DMI), graphene provides an additional advantage by acting as a protective layer against oxidation of the underlying metal film. However, the structural imperfections of graphene, often resulting from its growth conditions, can facilitate intercalation, which can compromise the underlying ferromagnetic layer. To address this issue, here, the use of a titania capping layer as a protective barrier for a heterostructure consisting of monolayer graphene grown on a thin cobalt film is proposed. The results demonstrate that the titanium oxide layer does not alter the properties of the interface, as confirmed by X-ray photoemission spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) imaging. Furthermore, magneto-optic Kerr effect (MOKE) measurements reveal that the interface's magnetic properties remain stable after prolonged exposure to ambient conditions. Absorption profile simulations show that the capping layer is transparent to visible wavelengths, demonstrating its capability to enable optical studies of atomic interfacial effects without the need for an ultra-high vacuum (UHV) environment. These findings position titanium oxide as a robust, non-invasive capping material for graphene-based spintronic heterostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信