Jorge A. Velásquez*, , , Jorge H. Sánchez, , , Luis F. Cardona, , and , Luis A. Forero,
{"title":"糠醛+十一烷和糠醛+戊烷体系的VLLE、动态粘度实验数据及其在工艺模拟中的应用","authors":"Jorge A. Velásquez*, , , Jorge H. Sánchez, , , Luis F. Cardona, , and , Luis A. Forero, ","doi":"10.1021/acs.jced.5c00471","DOIUrl":null,"url":null,"abstract":"<p >This work presents experimental data for liquid–liquid (LLE), vapor–liquid (VLE), and dynamic viscosity equilibria of the furfural + undecane and furfural + pentane mixtures at 85.25 kPa. Thermodynamic properties were measured across a broad range of temperatures and compositions using validated equipment with low expanded uncertainties: 0.21 K for VLE, 0.42 K for LLE, 0.12 K for viscosity temperature, and 0.177 mPa·s for viscosity (at 95% confidence level). The LLE, VLE, and VLLE data were modeled with a modified Peng–Robinson equation of state coupled with Huron-Vidal mixing rules and the NRTL model. Viscosity was modeled using a generalized logistic function and the Eyring-Wilson-Porter mixing rule. For the furfural + undecane system, average relative absolute deviations were 0.19% for LLE, 0.49% for VLE, and 3.67% for viscosity. For the furfural + pentane mixture, the VLLE deviation was 0.72%. A chemical process to produce undecane from furfural was also simulated, including aldol condensation, hydrocycloaddition, and hydrodeoxygenation reactions. A subsequent vapor–liquid–liquid separation followed by distillation was carried out using a rigorous stage-by-stage methodology in combination with the modified Peng–Robinson equation of state (EoS). The process achieved a 99.9% undecane recovery. The results provide a solid foundation for future research and industrial applications in biobased chemical production.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"70 10","pages":"4167–4182"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Data of VLLE, and Dynamic Viscosity for Furfural + Undecane and Furfural + Pentane Systems and Their Application to Process Simulation\",\"authors\":\"Jorge A. Velásquez*, , , Jorge H. Sánchez, , , Luis F. Cardona, , and , Luis A. Forero, \",\"doi\":\"10.1021/acs.jced.5c00471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work presents experimental data for liquid–liquid (LLE), vapor–liquid (VLE), and dynamic viscosity equilibria of the furfural + undecane and furfural + pentane mixtures at 85.25 kPa. Thermodynamic properties were measured across a broad range of temperatures and compositions using validated equipment with low expanded uncertainties: 0.21 K for VLE, 0.42 K for LLE, 0.12 K for viscosity temperature, and 0.177 mPa·s for viscosity (at 95% confidence level). The LLE, VLE, and VLLE data were modeled with a modified Peng–Robinson equation of state coupled with Huron-Vidal mixing rules and the NRTL model. Viscosity was modeled using a generalized logistic function and the Eyring-Wilson-Porter mixing rule. For the furfural + undecane system, average relative absolute deviations were 0.19% for LLE, 0.49% for VLE, and 3.67% for viscosity. For the furfural + pentane mixture, the VLLE deviation was 0.72%. A chemical process to produce undecane from furfural was also simulated, including aldol condensation, hydrocycloaddition, and hydrodeoxygenation reactions. A subsequent vapor–liquid–liquid separation followed by distillation was carried out using a rigorous stage-by-stage methodology in combination with the modified Peng–Robinson equation of state (EoS). The process achieved a 99.9% undecane recovery. The results provide a solid foundation for future research and industrial applications in biobased chemical production.</p>\",\"PeriodicalId\":42,\"journal\":{\"name\":\"Journal of Chemical & Engineering Data\",\"volume\":\"70 10\",\"pages\":\"4167–4182\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical & Engineering Data\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jced.5c00471\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.5c00471","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Data of VLLE, and Dynamic Viscosity for Furfural + Undecane and Furfural + Pentane Systems and Their Application to Process Simulation
This work presents experimental data for liquid–liquid (LLE), vapor–liquid (VLE), and dynamic viscosity equilibria of the furfural + undecane and furfural + pentane mixtures at 85.25 kPa. Thermodynamic properties were measured across a broad range of temperatures and compositions using validated equipment with low expanded uncertainties: 0.21 K for VLE, 0.42 K for LLE, 0.12 K for viscosity temperature, and 0.177 mPa·s for viscosity (at 95% confidence level). The LLE, VLE, and VLLE data were modeled with a modified Peng–Robinson equation of state coupled with Huron-Vidal mixing rules and the NRTL model. Viscosity was modeled using a generalized logistic function and the Eyring-Wilson-Porter mixing rule. For the furfural + undecane system, average relative absolute deviations were 0.19% for LLE, 0.49% for VLE, and 3.67% for viscosity. For the furfural + pentane mixture, the VLLE deviation was 0.72%. A chemical process to produce undecane from furfural was also simulated, including aldol condensation, hydrocycloaddition, and hydrodeoxygenation reactions. A subsequent vapor–liquid–liquid separation followed by distillation was carried out using a rigorous stage-by-stage methodology in combination with the modified Peng–Robinson equation of state (EoS). The process achieved a 99.9% undecane recovery. The results provide a solid foundation for future research and industrial applications in biobased chemical production.
期刊介绍:
The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.