共形两性离子聚合物纳米膜与锂电池

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shuo Jin, Pengyu Chen, Shifeng Hong, Haonian Shu, Xiaosi Gao, Ziang Gao, Samuel Baffour, Mingjia Fang, Yong Lak Joo, Rong Yang, Lynden A. Archer
{"title":"共形两性离子聚合物纳米膜与锂电池","authors":"Shuo Jin,&nbsp;Pengyu Chen,&nbsp;Shifeng Hong,&nbsp;Haonian Shu,&nbsp;Xiaosi Gao,&nbsp;Ziang Gao,&nbsp;Samuel Baffour,&nbsp;Mingjia Fang,&nbsp;Yong Lak Joo,&nbsp;Rong Yang,&nbsp;Lynden A. Archer","doi":"10.1126/sciadv.ady4460","DOIUrl":null,"url":null,"abstract":"<div >Scalable synthesis of electrochemically inert nanofilms with precise spatial and compositional control enables rational design of solid-electrolyte interphases (SEIs) in rechargeable batteries. Ion and molecule transport through SEIs largely determines the cycling stability of high-energy rechargeable metal and metal-ion batteries, where electroreduction during charging often occurs beyond electrolyte stability limits. We report nanometer-thick gradient zwitterionic polymer (G-ZWP) interphases, synthesized via a scalable solvent-free method, to regulate transport and electroreduction kinetics at Li-metal anodes, achieving stable cycling. The synthesis combines initiated chemical vapor deposition and diffusion-limited vapor derivatization to form a zwitterionic top layer with high ionic conductivity and an inner covalently cross-linked layer blocking solvent access while remaining stable at reducing potentials. Cu substrates with G-ZWP interphases show &gt;2000-hour cycling at 1 milliampere per square centimeter [6 milliampere hours per square centimeter (mA·hour/cm<sup>2</sup>)]. The interphases also enable long-term cycling of Li batteries (N/P = 0 to 2.5) and Li–dry-air batteries (10 mA·hour/cm<sup>2</sup>) and stabilize Na/Zn electrodeposition.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady4460","citationCount":"0","resultStr":"{\"title\":\"Conformal zwitterionic polymer nanofilms and lithium batteries\",\"authors\":\"Shuo Jin,&nbsp;Pengyu Chen,&nbsp;Shifeng Hong,&nbsp;Haonian Shu,&nbsp;Xiaosi Gao,&nbsp;Ziang Gao,&nbsp;Samuel Baffour,&nbsp;Mingjia Fang,&nbsp;Yong Lak Joo,&nbsp;Rong Yang,&nbsp;Lynden A. Archer\",\"doi\":\"10.1126/sciadv.ady4460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Scalable synthesis of electrochemically inert nanofilms with precise spatial and compositional control enables rational design of solid-electrolyte interphases (SEIs) in rechargeable batteries. Ion and molecule transport through SEIs largely determines the cycling stability of high-energy rechargeable metal and metal-ion batteries, where electroreduction during charging often occurs beyond electrolyte stability limits. We report nanometer-thick gradient zwitterionic polymer (G-ZWP) interphases, synthesized via a scalable solvent-free method, to regulate transport and electroreduction kinetics at Li-metal anodes, achieving stable cycling. The synthesis combines initiated chemical vapor deposition and diffusion-limited vapor derivatization to form a zwitterionic top layer with high ionic conductivity and an inner covalently cross-linked layer blocking solvent access while remaining stable at reducing potentials. Cu substrates with G-ZWP interphases show &gt;2000-hour cycling at 1 milliampere per square centimeter [6 milliampere hours per square centimeter (mA·hour/cm<sup>2</sup>)]. The interphases also enable long-term cycling of Li batteries (N/P = 0 to 2.5) and Li–dry-air batteries (10 mA·hour/cm<sup>2</sup>) and stabilize Na/Zn electrodeposition.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 41\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ady4460\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ady4460\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady4460","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有精确空间和成分控制的电化学惰性纳米膜的可扩展合成使可充电电池中固体电解质界面(sei)的合理设计成为可能。离子和分子通过sei的传输在很大程度上决定了高能可充电金属和金属离子电池的循环稳定性,其中充电过程中的电还原经常发生在电解质稳定性极限之外。我们报道了通过可扩展的无溶剂方法合成的纳米厚梯度两性离子聚合物(G-ZWP)界面,以调节锂金属阳极的运输和电还原动力学,实现稳定的循环。该合成结合了初始化学气相沉积和限制扩散的蒸汽衍生,形成了具有高离子电导率的两性离子顶层和内部共价交联层,阻止溶剂进入,同时保持稳定的还原电位。具有G-ZWP界面相的Cu衬底在1毫安/平方厘米[6毫安/平方厘米(mA·hour/ cm2)]下循环2000小时。该界面还可以实现锂电池(N/P = 0 ~ 2.5)和锂干空气电池(10 mA·h / cm2)的长期循环,并稳定Na/Zn电沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conformal zwitterionic polymer nanofilms and lithium batteries

Conformal zwitterionic polymer nanofilms and lithium batteries
Scalable synthesis of electrochemically inert nanofilms with precise spatial and compositional control enables rational design of solid-electrolyte interphases (SEIs) in rechargeable batteries. Ion and molecule transport through SEIs largely determines the cycling stability of high-energy rechargeable metal and metal-ion batteries, where electroreduction during charging often occurs beyond electrolyte stability limits. We report nanometer-thick gradient zwitterionic polymer (G-ZWP) interphases, synthesized via a scalable solvent-free method, to regulate transport and electroreduction kinetics at Li-metal anodes, achieving stable cycling. The synthesis combines initiated chemical vapor deposition and diffusion-limited vapor derivatization to form a zwitterionic top layer with high ionic conductivity and an inner covalently cross-linked layer blocking solvent access while remaining stable at reducing potentials. Cu substrates with G-ZWP interphases show >2000-hour cycling at 1 milliampere per square centimeter [6 milliampere hours per square centimeter (mA·hour/cm2)]. The interphases also enable long-term cycling of Li batteries (N/P = 0 to 2.5) and Li–dry-air batteries (10 mA·hour/cm2) and stabilize Na/Zn electrodeposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信