Xueli Zheng, Zhichen Xue, Hongchang Hao, Yukio Cho, Yuanshun Li, Chanho Kim, Pawel Czaja, Samuel Sanghyun Lee, Sharon Bone, Eleanor Spielman-Sun, Zhelong Jiang, X. Wendy Gu, Johanna Nelson Weker, Guang Yang, Jagjit Nanda
{"title":"固态电池层状氧化物阴极降解中的电化学-机械相互作用","authors":"Xueli Zheng, Zhichen Xue, Hongchang Hao, Yukio Cho, Yuanshun Li, Chanho Kim, Pawel Czaja, Samuel Sanghyun Lee, Sharon Bone, Eleanor Spielman-Sun, Zhelong Jiang, X. Wendy Gu, Johanna Nelson Weker, Guang Yang, Jagjit Nanda","doi":"10.1126/sciadv.ady7189","DOIUrl":null,"url":null,"abstract":"Solid-state batteries (SSBs) hold notable promise for advancing energy storage technologies. However, their commercial viability is limited by the poor cycle stability and complex degradation mechanism. This study underscores the pivotal role of electro-chemo-mechanical interactions in driving the failure of SSBs. Leveraging advanced x-ray imaging and spectroscopy techniques, we analyzed LiNi <jats:sub>0.8</jats:sub> Mn <jats:sub>0.1</jats:sub> Co <jats:sub>0.1</jats:sub> O <jats:sub>2</jats:sub> (NMC811) cathodes from cycled Li <jats:italic toggle=\"yes\"> <jats:sub>x</jats:sub> </jats:italic> In||Li <jats:sub>6</jats:sub> PS <jats:sub>5</jats:sub> Cl (LPSC)||NMC811 SSBs, uncovering the interplay between microstructure, chemical heterogeneity, mechanical characteristics, and electrochemical performance. Our results show that revealing electro-chemo-mechanical interactions is essential to develop strategies to suppress the degradation of SSBs. Particularly, we revisit a LiNbO <jats:sub>3</jats:sub> (LNO) coating layer to mitigate electrochemical degradation. The LNO@NMC811 cathode retains 116 milliampere-hours per gram after 200 cycles, showing excellent stability, while the uncoated NMC811 cathode keeps degrading over time, with suppressed chemical heterogeneity and mechanical failure. This work highlights the importance of synergizing advanced material design with coating techniques, ensuring uniform lithium flux and improving mechanical properties to achieve stable, high-performance SSBs.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"128 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling electro-chemo-mechanical interplay in layered oxide cathode degradation in solid-state batteries\",\"authors\":\"Xueli Zheng, Zhichen Xue, Hongchang Hao, Yukio Cho, Yuanshun Li, Chanho Kim, Pawel Czaja, Samuel Sanghyun Lee, Sharon Bone, Eleanor Spielman-Sun, Zhelong Jiang, X. Wendy Gu, Johanna Nelson Weker, Guang Yang, Jagjit Nanda\",\"doi\":\"10.1126/sciadv.ady7189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state batteries (SSBs) hold notable promise for advancing energy storage technologies. However, their commercial viability is limited by the poor cycle stability and complex degradation mechanism. This study underscores the pivotal role of electro-chemo-mechanical interactions in driving the failure of SSBs. Leveraging advanced x-ray imaging and spectroscopy techniques, we analyzed LiNi <jats:sub>0.8</jats:sub> Mn <jats:sub>0.1</jats:sub> Co <jats:sub>0.1</jats:sub> O <jats:sub>2</jats:sub> (NMC811) cathodes from cycled Li <jats:italic toggle=\\\"yes\\\"> <jats:sub>x</jats:sub> </jats:italic> In||Li <jats:sub>6</jats:sub> PS <jats:sub>5</jats:sub> Cl (LPSC)||NMC811 SSBs, uncovering the interplay between microstructure, chemical heterogeneity, mechanical characteristics, and electrochemical performance. Our results show that revealing electro-chemo-mechanical interactions is essential to develop strategies to suppress the degradation of SSBs. Particularly, we revisit a LiNbO <jats:sub>3</jats:sub> (LNO) coating layer to mitigate electrochemical degradation. The LNO@NMC811 cathode retains 116 milliampere-hours per gram after 200 cycles, showing excellent stability, while the uncoated NMC811 cathode keeps degrading over time, with suppressed chemical heterogeneity and mechanical failure. This work highlights the importance of synergizing advanced material design with coating techniques, ensuring uniform lithium flux and improving mechanical properties to achieve stable, high-performance SSBs.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.ady7189\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ady7189","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
固态电池(SSBs)在推进能源存储技术方面有着显著的前景。但其循环稳定性差,降解机理复杂,限制了其商业可行性。这项研究强调了电化学-机械相互作用在驱动ssb失效中的关键作用。利用先进的x射线成像和光谱技术,我们分析了循环Li x In||Li 6 PS 5 Cl (LPSC)||NMC811 ssb的LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811)阴极,揭示了微观结构、化学非均质性、机械特性和电化学性能之间的相互作用。我们的研究结果表明,揭示电化学-机械相互作用对于制定抑制SSBs降解的策略至关重要。特别地,我们重新研究了linbo3 (LNO)涂层来减轻电化学降解。LNO@NMC811阴极在200次循环后保持每克116毫安小时,表现出优异的稳定性,而未涂覆的NMC811阴极随着时间的推移不断降解,化学非均质性和机械故障受到抑制。这项工作强调了先进的材料设计与涂层技术协同的重要性,确保均匀的锂通量和改善机械性能,以实现稳定,高性能的ssb。
Unravelling electro-chemo-mechanical interplay in layered oxide cathode degradation in solid-state batteries
Solid-state batteries (SSBs) hold notable promise for advancing energy storage technologies. However, their commercial viability is limited by the poor cycle stability and complex degradation mechanism. This study underscores the pivotal role of electro-chemo-mechanical interactions in driving the failure of SSBs. Leveraging advanced x-ray imaging and spectroscopy techniques, we analyzed LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) cathodes from cycled Li x In||Li 6 PS 5 Cl (LPSC)||NMC811 SSBs, uncovering the interplay between microstructure, chemical heterogeneity, mechanical characteristics, and electrochemical performance. Our results show that revealing electro-chemo-mechanical interactions is essential to develop strategies to suppress the degradation of SSBs. Particularly, we revisit a LiNbO 3 (LNO) coating layer to mitigate electrochemical degradation. The LNO@NMC811 cathode retains 116 milliampere-hours per gram after 200 cycles, showing excellent stability, while the uncoated NMC811 cathode keeps degrading over time, with suppressed chemical heterogeneity and mechanical failure. This work highlights the importance of synergizing advanced material design with coating techniques, ensuring uniform lithium flux and improving mechanical properties to achieve stable, high-performance SSBs.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.