现场揭示了锂硫电池催化阴极上的转化过程

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuan Li, Jian-Xin Tian, Xu-Sheng Zhang, Rui-Zhi Liu, Zhen-Zhen Shen, Hao-Nan Li, Shuang-Yan Lang, Rui Wen
{"title":"现场揭示了锂硫电池催化阴极上的转化过程","authors":"Yuan Li,&nbsp;Jian-Xin Tian,&nbsp;Xu-Sheng Zhang,&nbsp;Rui-Zhi Liu,&nbsp;Zhen-Zhen Shen,&nbsp;Hao-Nan Li,&nbsp;Shuang-Yan Lang,&nbsp;Rui Wen","doi":"10.1126/sciadv.ady6042","DOIUrl":null,"url":null,"abstract":"<div >Lithium-sulfur (Li-S) batteries have attracted attention due to their high theoretical capacity of 1675 mAh g<sup>−1</sup>. However, a knowledge gap remains regarding nanoscale lithium sulfide (Li<sub>2</sub>S) reactions, limiting full S utilization and rational catalyst design. Here, we show how Li<sub>2</sub>S nanoclusters transform and distribute under operation using in situ atomic force microscopy, providing the structure-(re)activity relationships. Comparing to the lamellar structures formed at noncatalyzed electrodes, Li<sub>2</sub>S deposited at Pt catalytic electrode exhibited a spherical morphology. The zero-order reaction kinetics was captured on catalytic surfaces, differing from noncatalyzed electrodes. The electrodeposition of Li<sub>2</sub>S follows the overpotential-driven progressive and instantaneous nucleation processes, showing a promoted deposition and reversible dissolution at the overpotential of 80 mV. The Li<sub>2</sub>S transformation under high polysulfides concentrations indicated that an increase of catalytic sites and uniform distribution of Li<sub>2</sub>S would be critical for practical Li-S batteries. Our work provides fundamental insights into Li<sub>2</sub>S reaction kinetics, advancing the development of energy storage systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady6042","citationCount":"0","resultStr":"{\"title\":\"In situ unveiling the conversion processes on the catalytic cathode in lithium-sulfur batteries\",\"authors\":\"Yuan Li,&nbsp;Jian-Xin Tian,&nbsp;Xu-Sheng Zhang,&nbsp;Rui-Zhi Liu,&nbsp;Zhen-Zhen Shen,&nbsp;Hao-Nan Li,&nbsp;Shuang-Yan Lang,&nbsp;Rui Wen\",\"doi\":\"10.1126/sciadv.ady6042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Lithium-sulfur (Li-S) batteries have attracted attention due to their high theoretical capacity of 1675 mAh g<sup>−1</sup>. However, a knowledge gap remains regarding nanoscale lithium sulfide (Li<sub>2</sub>S) reactions, limiting full S utilization and rational catalyst design. Here, we show how Li<sub>2</sub>S nanoclusters transform and distribute under operation using in situ atomic force microscopy, providing the structure-(re)activity relationships. Comparing to the lamellar structures formed at noncatalyzed electrodes, Li<sub>2</sub>S deposited at Pt catalytic electrode exhibited a spherical morphology. The zero-order reaction kinetics was captured on catalytic surfaces, differing from noncatalyzed electrodes. The electrodeposition of Li<sub>2</sub>S follows the overpotential-driven progressive and instantaneous nucleation processes, showing a promoted deposition and reversible dissolution at the overpotential of 80 mV. The Li<sub>2</sub>S transformation under high polysulfides concentrations indicated that an increase of catalytic sites and uniform distribution of Li<sub>2</sub>S would be critical for practical Li-S batteries. Our work provides fundamental insights into Li<sub>2</sub>S reaction kinetics, advancing the development of energy storage systems.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 41\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ady6042\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ady6042\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady6042","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池(Li-S)因其高达1675 mAh g−1的理论容量而备受关注。然而,关于纳米级硫化锂(Li 2s)反应的知识差距仍然存在,限制了硫的充分利用和合理的催化剂设计。在这里,我们用原位原子力显微镜展示了Li 2s纳米团簇如何在操作下转化和分布,提供了结构-(重)活性关系。与在非催化电极上形成的层状结构相比,在Pt催化电极上沉积的Li 2s呈现球形结构。零级反应动力学被捕获在催化表面,不同于非催化电极。锂2s的电沉积遵循过电位驱动的渐进成核和瞬时成核过程,在80 mV过电位下表现为促进沉积和可逆溶解。高多硫化物浓度下Li 2s的转化表明,催化位点的增加和Li 2s的均匀分布对实际的Li-S电池至关重要。我们的工作提供了对锂2s反应动力学的基本见解,推动了储能系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In situ unveiling the conversion processes on the catalytic cathode in lithium-sulfur batteries

In situ unveiling the conversion processes on the catalytic cathode in lithium-sulfur batteries
Lithium-sulfur (Li-S) batteries have attracted attention due to their high theoretical capacity of 1675 mAh g−1. However, a knowledge gap remains regarding nanoscale lithium sulfide (Li2S) reactions, limiting full S utilization and rational catalyst design. Here, we show how Li2S nanoclusters transform and distribute under operation using in situ atomic force microscopy, providing the structure-(re)activity relationships. Comparing to the lamellar structures formed at noncatalyzed electrodes, Li2S deposited at Pt catalytic electrode exhibited a spherical morphology. The zero-order reaction kinetics was captured on catalytic surfaces, differing from noncatalyzed electrodes. The electrodeposition of Li2S follows the overpotential-driven progressive and instantaneous nucleation processes, showing a promoted deposition and reversible dissolution at the overpotential of 80 mV. The Li2S transformation under high polysulfides concentrations indicated that an increase of catalytic sites and uniform distribution of Li2S would be critical for practical Li-S batteries. Our work provides fundamental insights into Li2S reaction kinetics, advancing the development of energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信