基于深度学习的摩擦电声学纺织品,用于服装上的语音感知和直观的生成ai语音访问

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Beibei Shao, Tai-Chen Wu, Zhi-Xian Yan, Tien-Yu Ko, Wei-Chen Peng, Dun-Jie Jhan, Yu-Hsiang Chang, Jiun-Wei Fong, Ming-Han Lu, Wei-Chun Yang, Jiann-Yeu Chen, Ming-Yen Lu, Baoquan Sun, Heng-Jui Liu, Ruiyuan Liu, Ying-Chih Lai
{"title":"基于深度学习的摩擦电声学纺织品,用于服装上的语音感知和直观的生成ai语音访问","authors":"Beibei Shao,&nbsp;Tai-Chen Wu,&nbsp;Zhi-Xian Yan,&nbsp;Tien-Yu Ko,&nbsp;Wei-Chen Peng,&nbsp;Dun-Jie Jhan,&nbsp;Yu-Hsiang Chang,&nbsp;Jiun-Wei Fong,&nbsp;Ming-Han Lu,&nbsp;Wei-Chun Yang,&nbsp;Jiann-Yeu Chen,&nbsp;Ming-Yen Lu,&nbsp;Baoquan Sun,&nbsp;Heng-Jui Liu,&nbsp;Ruiyuan Liu,&nbsp;Ying-Chih Lai","doi":"10.1126/sciadv.adx3348","DOIUrl":null,"url":null,"abstract":"<div >Integrating generative artificial intelligence (AI) chatbots with acoustic perception textiles allows everyday clothing to retrieve information, seek advice, and perform tasks through voice interactions. Here, we present a deep learning (DL)–empowered triboelectric AI acoustic textile (A-Textile) leveraging electrostatic charges on clothing for imperceptible, active voice perception and AI access. The multilayered A-Textile features a composite coating of three-dimensional SnS<sub>2</sub> nanoflowers (NFs) embedded in silicone rubber to enhance charge capture and transfer, along with a SnS<sub>2</sub> NFs–decorated graphite-like carbonized textile for charge accumulation and preservation. This design maximizes the charge density on the textile, achieving a 21-volt output, 1.2 volts per pascal sensitivity, 1-hertz resolution, and a wide sound response frequency range of 80 to 900 hertz. Using a well-trained DL model, the A-Textile precisely classifies and visualizes voice commands for internet-of-things control and cloud information access. Furthermore, we demonstrate its integration with ChatGPT, providing an intuitive interface for engaging with generative AI services to perform sophisticated tasks.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 41","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx3348","citationCount":"0","resultStr":"{\"title\":\"Deep learning–empowered triboelectric acoustic textile for voice perception and intuitive generative AI-voice access on clothing\",\"authors\":\"Beibei Shao,&nbsp;Tai-Chen Wu,&nbsp;Zhi-Xian Yan,&nbsp;Tien-Yu Ko,&nbsp;Wei-Chen Peng,&nbsp;Dun-Jie Jhan,&nbsp;Yu-Hsiang Chang,&nbsp;Jiun-Wei Fong,&nbsp;Ming-Han Lu,&nbsp;Wei-Chun Yang,&nbsp;Jiann-Yeu Chen,&nbsp;Ming-Yen Lu,&nbsp;Baoquan Sun,&nbsp;Heng-Jui Liu,&nbsp;Ruiyuan Liu,&nbsp;Ying-Chih Lai\",\"doi\":\"10.1126/sciadv.adx3348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Integrating generative artificial intelligence (AI) chatbots with acoustic perception textiles allows everyday clothing to retrieve information, seek advice, and perform tasks through voice interactions. Here, we present a deep learning (DL)–empowered triboelectric AI acoustic textile (A-Textile) leveraging electrostatic charges on clothing for imperceptible, active voice perception and AI access. The multilayered A-Textile features a composite coating of three-dimensional SnS<sub>2</sub> nanoflowers (NFs) embedded in silicone rubber to enhance charge capture and transfer, along with a SnS<sub>2</sub> NFs–decorated graphite-like carbonized textile for charge accumulation and preservation. This design maximizes the charge density on the textile, achieving a 21-volt output, 1.2 volts per pascal sensitivity, 1-hertz resolution, and a wide sound response frequency range of 80 to 900 hertz. Using a well-trained DL model, the A-Textile precisely classifies and visualizes voice commands for internet-of-things control and cloud information access. Furthermore, we demonstrate its integration with ChatGPT, providing an intuitive interface for engaging with generative AI services to perform sophisticated tasks.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 41\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx3348\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx3348\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx3348","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将生成式人工智能(AI)聊天机器人与声学感知纺织品相结合,可以让日常服装通过语音交互检索信息、寻求建议和执行任务。在这里,我们提出了一种深度学习(DL)授权的摩擦电AI声学纺织品(a - textile),利用衣服上的静电荷来实现难以察觉的主动语音感知和AI访问。多层a - textile的特点是,在硅橡胶中嵌入三维s2ns纳米花(NFs)的复合涂层,以增强电荷的捕获和转移,以及s2ns纳米花装饰的石墨状碳化纺织品,用于电荷的积累和保存。这种设计最大限度地提高了织物上的电荷密度,实现了21伏的输出,每帕斯卡1.2伏的灵敏度,1赫兹的分辨率,以及80到900赫兹的宽声响应频率范围。a - textile使用训练有素的深度学习模型,对物联网控制和云信息访问的语音命令进行精确分类和可视化。此外,我们还演示了它与ChatGPT的集成,提供了一个直观的界面,用于与生成人工智能服务进行交互,以执行复杂的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning–empowered triboelectric acoustic textile for voice perception and intuitive generative AI-voice access on clothing

Deep learning–empowered triboelectric acoustic textile for voice perception and intuitive generative AI-voice access on clothing
Integrating generative artificial intelligence (AI) chatbots with acoustic perception textiles allows everyday clothing to retrieve information, seek advice, and perform tasks through voice interactions. Here, we present a deep learning (DL)–empowered triboelectric AI acoustic textile (A-Textile) leveraging electrostatic charges on clothing for imperceptible, active voice perception and AI access. The multilayered A-Textile features a composite coating of three-dimensional SnS2 nanoflowers (NFs) embedded in silicone rubber to enhance charge capture and transfer, along with a SnS2 NFs–decorated graphite-like carbonized textile for charge accumulation and preservation. This design maximizes the charge density on the textile, achieving a 21-volt output, 1.2 volts per pascal sensitivity, 1-hertz resolution, and a wide sound response frequency range of 80 to 900 hertz. Using a well-trained DL model, the A-Textile precisely classifies and visualizes voice commands for internet-of-things control and cloud information access. Furthermore, we demonstrate its integration with ChatGPT, providing an intuitive interface for engaging with generative AI services to perform sophisticated tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信