Zhou-Tao Feng, Yuan Ma, Jing-Jing Tian, Hui-Ping Sun, Jin-Ku Liu
{"title":"GO-PANI@ZP复合材料的原位合成及长期缓蚀性能","authors":"Zhou-Tao Feng, Yuan Ma, Jing-Jing Tian, Hui-Ping Sun, Jin-Ku Liu","doi":"10.1021/acs.iecr.5c03007","DOIUrl":null,"url":null,"abstract":"This study successfully synthesized a graphene oxide-polyaniline@zinc phosphate (GO-PANI@ZP) composite through in situ polymerization and stepwise ion introduction. Using graphene oxide (GO) as the substrate, the sequential deposition of polyaniline (PANI) and zinc phosphate (ZP) mitigates the hydrophilicity and reduces interlayer agglomeration. The lamellar structure provides a physical barrier that extends corrosive media penetration pathways. PANI contributes redox reversibility to dynamically regulate charge transfer, facilitating the formation of an electrochemical protective layer. Protonated PANI responds to corrosion reactions and releases corrosion inhibitors. Additionally, the composite exhibits a microcapacitor effect, establishing a stable charge barrier at the coating-substrate interface that impedes corrosive species penetration. After 168 h of immersion in 3.5 wt % NaCl solution, the composite coating demonstrated a total impedance value 4.56 times that of epoxy resin, revealing exceptional corrosion resistance. This work provides a novel design strategy for developing organic–inorganic composite anticorrosion materials.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"21 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Synthesis and Long-Term Corrosion Inhibition Performance of GO-PANI@ZP Composite\",\"authors\":\"Zhou-Tao Feng, Yuan Ma, Jing-Jing Tian, Hui-Ping Sun, Jin-Ku Liu\",\"doi\":\"10.1021/acs.iecr.5c03007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study successfully synthesized a graphene oxide-polyaniline@zinc phosphate (GO-PANI@ZP) composite through in situ polymerization and stepwise ion introduction. Using graphene oxide (GO) as the substrate, the sequential deposition of polyaniline (PANI) and zinc phosphate (ZP) mitigates the hydrophilicity and reduces interlayer agglomeration. The lamellar structure provides a physical barrier that extends corrosive media penetration pathways. PANI contributes redox reversibility to dynamically regulate charge transfer, facilitating the formation of an electrochemical protective layer. Protonated PANI responds to corrosion reactions and releases corrosion inhibitors. Additionally, the composite exhibits a microcapacitor effect, establishing a stable charge barrier at the coating-substrate interface that impedes corrosive species penetration. After 168 h of immersion in 3.5 wt % NaCl solution, the composite coating demonstrated a total impedance value 4.56 times that of epoxy resin, revealing exceptional corrosion resistance. This work provides a novel design strategy for developing organic–inorganic composite anticorrosion materials.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.5c03007\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c03007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
In Situ Synthesis and Long-Term Corrosion Inhibition Performance of GO-PANI@ZP Composite
This study successfully synthesized a graphene oxide-polyaniline@zinc phosphate (GO-PANI@ZP) composite through in situ polymerization and stepwise ion introduction. Using graphene oxide (GO) as the substrate, the sequential deposition of polyaniline (PANI) and zinc phosphate (ZP) mitigates the hydrophilicity and reduces interlayer agglomeration. The lamellar structure provides a physical barrier that extends corrosive media penetration pathways. PANI contributes redox reversibility to dynamically regulate charge transfer, facilitating the formation of an electrochemical protective layer. Protonated PANI responds to corrosion reactions and releases corrosion inhibitors. Additionally, the composite exhibits a microcapacitor effect, establishing a stable charge barrier at the coating-substrate interface that impedes corrosive species penetration. After 168 h of immersion in 3.5 wt % NaCl solution, the composite coating demonstrated a total impedance value 4.56 times that of epoxy resin, revealing exceptional corrosion resistance. This work provides a novel design strategy for developing organic–inorganic composite anticorrosion materials.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.