基于光滑颗粒流体力学的不同孔径分布的三维多孔介质的流动运动学

IF 5 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Fan Chen, Junfeng Sun, Antoine Wautier, Mathieu Souzy
{"title":"基于光滑颗粒流体力学的不同孔径分布的三维多孔介质的流动运动学","authors":"Fan Chen, Junfeng Sun, Antoine Wautier, Mathieu Souzy","doi":"10.1029/2025wr040413","DOIUrl":null,"url":null,"abstract":"The effect of pore size distribution on the flow kinematics and transport properties within a three‐dimensional porous medium is investigated through numerical simulations using the Smoothed Particle Hydrodynamics (SPH) method. The method is first validated for a model porous medium within a monodisperse random spherical packing, for which the velocity distribution of the fluid flowing through the pores (i.e., the interstitial fluid velocity) and the dispersion process are found to be in both qualitative and quantitative agreement with previous experimental results. When varying the pore size distribution of the porous medium by using polydisperse beads (of different diameters), the interstitial fluid velocity distributions get narrower, and the streamlines' tortuosity decreases. This is interpreted as a result of the narrower pore size distribution reported for polydisperse microstructures. Although the dispersion process remains qualitatively the same among the investigated microstructures, with an initial ballistic trend followed by a transient seemingly anomalous regime and eventually a Fickian regime, the transverse dispersion process is found to be quantitatively reduced for polydisperse microstructure (i.e., with a narrower pore size distribution), consistently with the reported decrease in streamlines' tortuosity.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"33 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Kinematics in Three‐Dimensional Porous Media of Varying Pore Size Distribution Using Smoothed Particle Hydrodynamics\",\"authors\":\"Fan Chen, Junfeng Sun, Antoine Wautier, Mathieu Souzy\",\"doi\":\"10.1029/2025wr040413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of pore size distribution on the flow kinematics and transport properties within a three‐dimensional porous medium is investigated through numerical simulations using the Smoothed Particle Hydrodynamics (SPH) method. The method is first validated for a model porous medium within a monodisperse random spherical packing, for which the velocity distribution of the fluid flowing through the pores (i.e., the interstitial fluid velocity) and the dispersion process are found to be in both qualitative and quantitative agreement with previous experimental results. When varying the pore size distribution of the porous medium by using polydisperse beads (of different diameters), the interstitial fluid velocity distributions get narrower, and the streamlines' tortuosity decreases. This is interpreted as a result of the narrower pore size distribution reported for polydisperse microstructures. Although the dispersion process remains qualitatively the same among the investigated microstructures, with an initial ballistic trend followed by a transient seemingly anomalous regime and eventually a Fickian regime, the transverse dispersion process is found to be quantitatively reduced for polydisperse microstructure (i.e., with a narrower pore size distribution), consistently with the reported decrease in streamlines' tortuosity.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2025wr040413\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2025wr040413","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

采用光滑颗粒流体力学(SPH)方法进行数值模拟,研究了孔径分布对三维多孔介质内流动运动学和输运特性的影响。首先对单分散随机球形填料内的模型多孔介质进行了验证,结果表明,流体在孔隙中的速度分布(即间隙流体速度)和分散过程在定性和定量上都与前人的实验结果一致。采用多分散微球(不同直径)改变多孔介质的孔径分布时,间隙流体速度分布变窄,流线扭曲度减小。这被解释为多分散微结构的孔径分布较窄的结果。尽管在所研究的微观结构中,色散过程在质量上保持不变,即初始的弹道趋势,随后是短暂的看似异常的状态,最终是菲克状态,但在多分散微观结构中,横向色散过程在数量上减少了(即孔径分布更窄),这与报道的流线扭曲度的减少一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow Kinematics in Three‐Dimensional Porous Media of Varying Pore Size Distribution Using Smoothed Particle Hydrodynamics
The effect of pore size distribution on the flow kinematics and transport properties within a three‐dimensional porous medium is investigated through numerical simulations using the Smoothed Particle Hydrodynamics (SPH) method. The method is first validated for a model porous medium within a monodisperse random spherical packing, for which the velocity distribution of the fluid flowing through the pores (i.e., the interstitial fluid velocity) and the dispersion process are found to be in both qualitative and quantitative agreement with previous experimental results. When varying the pore size distribution of the porous medium by using polydisperse beads (of different diameters), the interstitial fluid velocity distributions get narrower, and the streamlines' tortuosity decreases. This is interpreted as a result of the narrower pore size distribution reported for polydisperse microstructures. Although the dispersion process remains qualitatively the same among the investigated microstructures, with an initial ballistic trend followed by a transient seemingly anomalous regime and eventually a Fickian regime, the transverse dispersion process is found to be quantitatively reduced for polydisperse microstructure (i.e., with a narrower pore size distribution), consistently with the reported decrease in streamlines' tortuosity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信