利用随机森林回归从S - ph和地震参数预测太阳磁活动

Ki-Beom Kim and Heon-Young Chang
{"title":"利用随机森林回归从S - ph和地震参数预测太阳磁活动","authors":"Ki-Beom Kim and Heon-Young Chang","doi":"10.3847/1538-4357/adfe6a","DOIUrl":null,"url":null,"abstract":"We investigate the potential of using the photometric magnetic proxy Sph and seismic parameters, such as the frequency of maximum power ( ) and the large frequency separation (Δν), derived from Solar and Heliospheric Observatory/Variability of Solar Irradiance and Gravity Oscillations observations to predict the 10.7 cm solar radio flux, a widely used index of solar magnetic activity. A random forest regression model is trained and tested on time series divided into multiple temporal subsets and input parameter combinations. The model achieves strong predictive performance (R2 > 0.92) across configurations and significantly outperforms a classical linear regression model. Our results show that Sph effectively captures long-term variations, while the seismic amplitude parameter is more responsive to short-term fluctuations. Combining Sph with the full set of seismic parameters yields the highest accuracy and offers a promising approach for diagnosing activity in other solar-like stars where direct magnetic field measurements are infeasible.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Solar Magnetic Activity from S ph and Seismic Parameters Using Random Forest Regression\",\"authors\":\"Ki-Beom Kim and Heon-Young Chang\",\"doi\":\"10.3847/1538-4357/adfe6a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the potential of using the photometric magnetic proxy Sph and seismic parameters, such as the frequency of maximum power ( ) and the large frequency separation (Δν), derived from Solar and Heliospheric Observatory/Variability of Solar Irradiance and Gravity Oscillations observations to predict the 10.7 cm solar radio flux, a widely used index of solar magnetic activity. A random forest regression model is trained and tested on time series divided into multiple temporal subsets and input parameter combinations. The model achieves strong predictive performance (R2 > 0.92) across configurations and significantly outperforms a classical linear regression model. Our results show that Sph effectively captures long-term variations, while the seismic amplitude parameter is more responsive to short-term fluctuations. Combining Sph with the full set of seismic parameters yields the highest accuracy and offers a promising approach for diagnosing activity in other solar-like stars where direct magnetic field measurements are infeasible.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/adfe6a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adfe6a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了利用来自太阳和日球层观测/太阳辐照度和重力振荡观测的光度计磁代理Sph和地震参数(如最大功率频率()和大频率间隔(Δν))来预测10.7 cm太阳射电通量(一个广泛使用的太阳磁活动指数)的潜力。对随机森林回归模型进行训练,并对时间序列和输入参数组合进行检验。该模型实现了较强的预测性能(R2 > 0.92),显著优于经典线性回归模型。结果表明,Sph参数能有效地反映地震的长期变化,而振幅参数对短期波动的响应更大。将Sph与全套地震参数相结合,可以产生最高的精度,并为诊断其他类太阳恒星的活动提供了一种有希望的方法,在这些恒星中,直接磁场测量是不可实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Solar Magnetic Activity from S ph and Seismic Parameters Using Random Forest Regression
We investigate the potential of using the photometric magnetic proxy Sph and seismic parameters, such as the frequency of maximum power ( ) and the large frequency separation (Δν), derived from Solar and Heliospheric Observatory/Variability of Solar Irradiance and Gravity Oscillations observations to predict the 10.7 cm solar radio flux, a widely used index of solar magnetic activity. A random forest regression model is trained and tested on time series divided into multiple temporal subsets and input parameter combinations. The model achieves strong predictive performance (R2 > 0.92) across configurations and significantly outperforms a classical linear regression model. Our results show that Sph effectively captures long-term variations, while the seismic amplitude parameter is more responsive to short-term fluctuations. Combining Sph with the full set of seismic parameters yields the highest accuracy and offers a promising approach for diagnosing activity in other solar-like stars where direct magnetic field measurements are infeasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信