基于典型相关分析的全球地球空间模型的系统科学验证

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Gian Luca Delzanno, Brianna Isola, Christian Lao, Joseph E. Borovsky, Kareem Sorathia, Viacheslav G. Merkin, Oleksandr Koshkarov, Andrew McCubbin, Jeff Garretson, Harry Arnold, Dong Lin
{"title":"基于典型相关分析的全球地球空间模型的系统科学验证","authors":"Gian Luca Delzanno, Brianna Isola, Christian Lao, Joseph E. Borovsky, Kareem Sorathia, Viacheslav G. Merkin, Oleksandr Koshkarov, Andrew McCubbin, Jeff Garretson, Harry Arnold, Dong Lin","doi":"10.1029/2025gl115589","DOIUrl":null,"url":null,"abstract":"A systems science approach based on canonical correlation analysis (CCA) is applied as a new, behavioral way to validate global geospace models. The biggest novelty of the technique is that it validates models at a system level, whereby a side-by-side comparison is performed of CCA applied to a 30-day observational and the corresponding simulation data sets comprising quiet, moderate and active times. The simulation used the Multiscale Atmosphere-Geospace Environment (MAGE) model. It is shown that (a) CCA must be combined with sensitivity analysis to be effective, (b) the MAGE model generally reproduces the observed behavior (more so for quieter time intervals), quantified by the intercorrelations between different variables and (c) the technique identifies the SuperMAG SML index as a quantity for which refinements of the model are needed.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"22 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a Global Geospace Model With a Systems Science Approach Based on Canonical Correlation Analysis\",\"authors\":\"Gian Luca Delzanno, Brianna Isola, Christian Lao, Joseph E. Borovsky, Kareem Sorathia, Viacheslav G. Merkin, Oleksandr Koshkarov, Andrew McCubbin, Jeff Garretson, Harry Arnold, Dong Lin\",\"doi\":\"10.1029/2025gl115589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systems science approach based on canonical correlation analysis (CCA) is applied as a new, behavioral way to validate global geospace models. The biggest novelty of the technique is that it validates models at a system level, whereby a side-by-side comparison is performed of CCA applied to a 30-day observational and the corresponding simulation data sets comprising quiet, moderate and active times. The simulation used the Multiscale Atmosphere-Geospace Environment (MAGE) model. It is shown that (a) CCA must be combined with sensitivity analysis to be effective, (b) the MAGE model generally reproduces the observed behavior (more so for quieter time intervals), quantified by the intercorrelations between different variables and (c) the technique identifies the SuperMAG SML index as a quantity for which refinements of the model are needed.\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2025gl115589\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2025gl115589","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于典型相关分析(CCA)的系统科学方法作为一种新的、行为的方法来验证全球地球空间模型。该技术最大的新颖之处在于,它可以在系统层面验证模型,从而将CCA应用于30天的观测和相应的模拟数据集(包括安静、温和和活跃时间)进行并排比较。模拟采用多尺度大气-地球空间环境(MAGE)模式。结果表明:(a) CCA必须与敏感性分析相结合才能有效,(b) MAGE模型通常再现观察到的行为(对于较安静的时间间隔),通过不同变量之间的相互关系进行量化,(c)该技术将SuperMAG SML指数确定为需要对模型进行改进的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of a Global Geospace Model With a Systems Science Approach Based on Canonical Correlation Analysis
A systems science approach based on canonical correlation analysis (CCA) is applied as a new, behavioral way to validate global geospace models. The biggest novelty of the technique is that it validates models at a system level, whereby a side-by-side comparison is performed of CCA applied to a 30-day observational and the corresponding simulation data sets comprising quiet, moderate and active times. The simulation used the Multiscale Atmosphere-Geospace Environment (MAGE) model. It is shown that (a) CCA must be combined with sensitivity analysis to be effective, (b) the MAGE model generally reproduces the observed behavior (more so for quieter time intervals), quantified by the intercorrelations between different variables and (c) the technique identifies the SuperMAG SML index as a quantity for which refinements of the model are needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信