{"title":"通过空间受限发射极掺杂实现单分散SiO2微粒子的可编程余辉调谐。","authors":"Xue Chen,Zhenyu Gong,Chenxi Peng,Tian Bai,Zhongbin Wu,Weidong Xu,Xiaowang Liu,Wei Huang","doi":"10.1038/s41467-025-63901-5","DOIUrl":null,"url":null,"abstract":"Developing monodisperse microparticles with tailored afterglow properties is crucial for optoelectronic applications, achieving afterglow tuning in uniform microsized platforms remains a significant challenge. Here, we present programmable afterglow tuning in monodisperse SiO2 MPs through spatially confined emitter doping, creating core@shell@shell SiO2 MPs. By repeatedly performing pseudomorphic transformation, we achieve spatially confined doping of 4-phenylpyridine, 4,4'-bipyridine, and 1,8-naphthalimide into different layers. This method enables afterglow color output from blue to cyan and orange by shifting main excitation from 250 to 350 nm. It also allows tuning of afterglow lifetime and quantum yields of the dopants by gradually enhancing dopant-matrix interactions through repeating hydrothermal reactions. Additionally, altering the doping positions further controls the optical properties due to a combined screen effect by the outer SiO2 matrix and dopants. Our approach enables the creation of a versatile library of optically active SiO2 MPs with finely tuned properties, paving the way for advanced photonic crystal platforms for optical encoding and spontaneous emission regulation.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"33 1","pages":"8900"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable afterglow tuning in monodisperse SiO2 microparticles through spatially confined emitter doping.\",\"authors\":\"Xue Chen,Zhenyu Gong,Chenxi Peng,Tian Bai,Zhongbin Wu,Weidong Xu,Xiaowang Liu,Wei Huang\",\"doi\":\"10.1038/s41467-025-63901-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing monodisperse microparticles with tailored afterglow properties is crucial for optoelectronic applications, achieving afterglow tuning in uniform microsized platforms remains a significant challenge. Here, we present programmable afterglow tuning in monodisperse SiO2 MPs through spatially confined emitter doping, creating core@shell@shell SiO2 MPs. By repeatedly performing pseudomorphic transformation, we achieve spatially confined doping of 4-phenylpyridine, 4,4'-bipyridine, and 1,8-naphthalimide into different layers. This method enables afterglow color output from blue to cyan and orange by shifting main excitation from 250 to 350 nm. It also allows tuning of afterglow lifetime and quantum yields of the dopants by gradually enhancing dopant-matrix interactions through repeating hydrothermal reactions. Additionally, altering the doping positions further controls the optical properties due to a combined screen effect by the outer SiO2 matrix and dopants. Our approach enables the creation of a versatile library of optically active SiO2 MPs with finely tuned properties, paving the way for advanced photonic crystal platforms for optical encoding and spontaneous emission regulation.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"33 1\",\"pages\":\"8900\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63901-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63901-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Programmable afterglow tuning in monodisperse SiO2 microparticles through spatially confined emitter doping.
Developing monodisperse microparticles with tailored afterglow properties is crucial for optoelectronic applications, achieving afterglow tuning in uniform microsized platforms remains a significant challenge. Here, we present programmable afterglow tuning in monodisperse SiO2 MPs through spatially confined emitter doping, creating core@shell@shell SiO2 MPs. By repeatedly performing pseudomorphic transformation, we achieve spatially confined doping of 4-phenylpyridine, 4,4'-bipyridine, and 1,8-naphthalimide into different layers. This method enables afterglow color output from blue to cyan and orange by shifting main excitation from 250 to 350 nm. It also allows tuning of afterglow lifetime and quantum yields of the dopants by gradually enhancing dopant-matrix interactions through repeating hydrothermal reactions. Additionally, altering the doping positions further controls the optical properties due to a combined screen effect by the outer SiO2 matrix and dopants. Our approach enables the creation of a versatile library of optically active SiO2 MPs with finely tuned properties, paving the way for advanced photonic crystal platforms for optical encoding and spontaneous emission regulation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.