{"title":"衰老耦合分化选择性地消除易患癌症的干细胞。","authors":"","doi":"10.1038/s41556-025-01783-x","DOIUrl":null,"url":null,"abstract":"Ageing and cancer are often seen as divergent tissue fates. In our study, we identify a protective programme, called senescence-coupled differentiation (or seno-differentiation), that eliminates cancer-prone stem cells by pushing them to differentiate. Whether melanocyte stem cells follow this path or bypass it under carcinogenic stress determines tissue outcomes: hair greying or melanoma development.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1605-1606"},"PeriodicalIF":19.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Senescence-coupled differentiation selectively eliminates cancer-prone stem cells\",\"authors\":\"\",\"doi\":\"10.1038/s41556-025-01783-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ageing and cancer are often seen as divergent tissue fates. In our study, we identify a protective programme, called senescence-coupled differentiation (or seno-differentiation), that eliminates cancer-prone stem cells by pushing them to differentiate. Whether melanocyte stem cells follow this path or bypass it under carcinogenic stress determines tissue outcomes: hair greying or melanoma development.\",\"PeriodicalId\":18977,\"journal\":{\"name\":\"Nature Cell Biology\",\"volume\":\"27 10\",\"pages\":\"1605-1606\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41556-025-01783-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-025-01783-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ageing and cancer are often seen as divergent tissue fates. In our study, we identify a protective programme, called senescence-coupled differentiation (or seno-differentiation), that eliminates cancer-prone stem cells by pushing them to differentiate. Whether melanocyte stem cells follow this path or bypass it under carcinogenic stress determines tissue outcomes: hair greying or melanoma development.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology