金属有机骨架衍生出具有界面氧空位的In2O3/ZrO2异质结,用于高选择性co2 -甲醇加氢。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Paramita Koley,Subhash Chandra Shit,Takefumi Yoshida,Deshetti Jampaiah,Hiroko Ariga-Miwa,Tomoya Uruga,Jyotishman Kaishyop,Tayebeh Hosseinnejad,Selvakannan Periasamy,Ravindra D Gudi,Dharmendra D Mandaliya,Yasuhiro Iwasawa,Suresh K Bhargava
{"title":"金属有机骨架衍生出具有界面氧空位的In2O3/ZrO2异质结,用于高选择性co2 -甲醇加氢。","authors":"Paramita Koley,Subhash Chandra Shit,Takefumi Yoshida,Deshetti Jampaiah,Hiroko Ariga-Miwa,Tomoya Uruga,Jyotishman Kaishyop,Tayebeh Hosseinnejad,Selvakannan Periasamy,Ravindra D Gudi,Dharmendra D Mandaliya,Yasuhiro Iwasawa,Suresh K Bhargava","doi":"10.1038/s41467-025-63932-y","DOIUrl":null,"url":null,"abstract":"The hydrogenation of CO2 to methanol is a promising route for carbon capture and utilization, however achieving high selectivity and productivity remains a challenge. This study presents a novel catalyst synthesized by pyrolyzing a zirconium-based metal-organic framework impregnated with indium, yielding ultrafine In2O3 nanoparticles uniformly embedded within a ZrO2 and carbon matrix. The resulting In2O3/ZrO2 heterojunction exhibited abundant oxygen vacancies at the interface, which is crucial for enhancing the catalytic performance. Under gas-phase conditions, the catalyst achieves an exceptional methanol selectivity of 81% with a record-high productivity of 2.64 gMeOH·gcat⁻¹·h⁻¹ at mild reaction conditions, while in liquid-phase hydrogenation, methanol selectivity reaches 96%. Comprehensive structural characterizations confirmed that oxygen vacancies and the heterointerface served as active sites, facilitating CO2 activation and methanol stabilization. Mechanistic insights from in-situ DRIFTS and ATR-IR spectroscopy revealed that methanol formation proceeds via the formate pathway, further supported by in-situ ambient-pressure X-ray photoelectron spectroscopy, demonstrating electronic structural modulation and an increased concentration of oxygen vacancies. These findings underscore the critical role of defect engineering in optimizing CO2 hydrogenation catalysts and provide a pathway for designing highly efficient systems for sustainable methanol production.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"56 1","pages":"8903"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal organic framework derived In2O3/ZrO2 heterojunctions with interfacial oxygen vacancies for highly selective CO2-to-methanol hydrogenation.\",\"authors\":\"Paramita Koley,Subhash Chandra Shit,Takefumi Yoshida,Deshetti Jampaiah,Hiroko Ariga-Miwa,Tomoya Uruga,Jyotishman Kaishyop,Tayebeh Hosseinnejad,Selvakannan Periasamy,Ravindra D Gudi,Dharmendra D Mandaliya,Yasuhiro Iwasawa,Suresh K Bhargava\",\"doi\":\"10.1038/s41467-025-63932-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydrogenation of CO2 to methanol is a promising route for carbon capture and utilization, however achieving high selectivity and productivity remains a challenge. This study presents a novel catalyst synthesized by pyrolyzing a zirconium-based metal-organic framework impregnated with indium, yielding ultrafine In2O3 nanoparticles uniformly embedded within a ZrO2 and carbon matrix. The resulting In2O3/ZrO2 heterojunction exhibited abundant oxygen vacancies at the interface, which is crucial for enhancing the catalytic performance. Under gas-phase conditions, the catalyst achieves an exceptional methanol selectivity of 81% with a record-high productivity of 2.64 gMeOH·gcat⁻¹·h⁻¹ at mild reaction conditions, while in liquid-phase hydrogenation, methanol selectivity reaches 96%. Comprehensive structural characterizations confirmed that oxygen vacancies and the heterointerface served as active sites, facilitating CO2 activation and methanol stabilization. Mechanistic insights from in-situ DRIFTS and ATR-IR spectroscopy revealed that methanol formation proceeds via the formate pathway, further supported by in-situ ambient-pressure X-ray photoelectron spectroscopy, demonstrating electronic structural modulation and an increased concentration of oxygen vacancies. These findings underscore the critical role of defect engineering in optimizing CO2 hydrogenation catalysts and provide a pathway for designing highly efficient systems for sustainable methanol production.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"56 1\",\"pages\":\"8903\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63932-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63932-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳加氢制甲醇是一种很有前途的碳捕获和利用途径,但实现高选择性和高生产率仍然是一个挑战。本研究提出了一种新型催化剂,通过热解锆基金属-有机骨架,并浸渍铟,生成超细的In2O3纳米颗粒均匀地嵌入在ZrO2和碳基体中。所得的In2O3/ZrO2异质结在界面处表现出丰富的氧空位,这对提高催化性能至关重要。在气相条件下,该催化剂的甲醇选择性高达81%,在温和反应条件下的产率为2.64 gMeOH·gcat·h⁻¹,而在液相加氢条件下,甲醇选择性达到96%。综合结构表征证实,氧空位和异质界面作为活性位点,促进CO2活化和甲醇稳定。原位DRIFTS和ATR-IR光谱的机理分析表明,甲醇的形成是通过甲酸途径进行的,进一步得到了原位环境压力x射线光电子能谱的支持,证明了电子结构的调制和氧空位浓度的增加。这些发现强调了缺陷工程在优化CO2加氢催化剂中的关键作用,并为设计高效的可持续甲醇生产系统提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal organic framework derived In2O3/ZrO2 heterojunctions with interfacial oxygen vacancies for highly selective CO2-to-methanol hydrogenation.
The hydrogenation of CO2 to methanol is a promising route for carbon capture and utilization, however achieving high selectivity and productivity remains a challenge. This study presents a novel catalyst synthesized by pyrolyzing a zirconium-based metal-organic framework impregnated with indium, yielding ultrafine In2O3 nanoparticles uniformly embedded within a ZrO2 and carbon matrix. The resulting In2O3/ZrO2 heterojunction exhibited abundant oxygen vacancies at the interface, which is crucial for enhancing the catalytic performance. Under gas-phase conditions, the catalyst achieves an exceptional methanol selectivity of 81% with a record-high productivity of 2.64 gMeOH·gcat⁻¹·h⁻¹ at mild reaction conditions, while in liquid-phase hydrogenation, methanol selectivity reaches 96%. Comprehensive structural characterizations confirmed that oxygen vacancies and the heterointerface served as active sites, facilitating CO2 activation and methanol stabilization. Mechanistic insights from in-situ DRIFTS and ATR-IR spectroscopy revealed that methanol formation proceeds via the formate pathway, further supported by in-situ ambient-pressure X-ray photoelectron spectroscopy, demonstrating electronic structural modulation and an increased concentration of oxygen vacancies. These findings underscore the critical role of defect engineering in optimizing CO2 hydrogenation catalysts and provide a pathway for designing highly efficient systems for sustainable methanol production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信