Gregory G Guymon,Hao A Nguyen,David Sharp,Tommy Nguyen,Henry Lei,David S Ginger,Kai-Mei C Fu,Arka Majumdar,Brandi M Cossairt,J Devin MacKenzie
{"title":"单量子点的确定性打印。","authors":"Gregory G Guymon,Hao A Nguyen,David Sharp,Tommy Nguyen,Henry Lei,David S Ginger,Kai-Mei C Fu,Arka Majumdar,Brandi M Cossairt,J Devin MacKenzie","doi":"10.1002/adma.202513707","DOIUrl":null,"url":null,"abstract":"The unique optical properties of quantum dots (QDs), size-tunable emission, and high quantum yield make them ideal candidates for applications in secure quantum communication, quantum computing, targeted single-cell and molecular tagging, and sensing. Scalable and deterministic heterointegration strategies for single QDs have, however, remained largely out of reach due to inherent material incompatibilities with conventional semiconductor manufacturing processes. To advance scalable photonic quantum device architectures, it is therefore crucial to adopt placement and heterointegration strategies that can address these challenges. Here, an electrohydrodynamic (EHD) printing model is presented, single particle extraction electrodynamics (SPEED) printing, that exploits a novel regime of nanoscale dielectrophoretics to print and deterministically position single colloidal QDs. Using QDs solubilized in apolar solvents, this additive, a near-zero-waste nanomanufacturing process, overcomes continuum fluid surface energetics and stochastic imprecision that limited previous colloidal deposition strategies, achieving selective extraction and deposition of individual QDs at sub-zeptoliter volumes. Photoluminescence and autocorrelation function (g(2)) measurements confirm nanophotonic cavity-QD integration and single-photon emission from single printed QDs. By enabling deterministic placement of single quantum dots, this method provides a powerful, scalable, and sustainable platform for integrating complex photonic circuits and quantum light sources with nanoscale precision.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"16 1","pages":"e13707"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic Printing of Single Quantum Dots.\",\"authors\":\"Gregory G Guymon,Hao A Nguyen,David Sharp,Tommy Nguyen,Henry Lei,David S Ginger,Kai-Mei C Fu,Arka Majumdar,Brandi M Cossairt,J Devin MacKenzie\",\"doi\":\"10.1002/adma.202513707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique optical properties of quantum dots (QDs), size-tunable emission, and high quantum yield make them ideal candidates for applications in secure quantum communication, quantum computing, targeted single-cell and molecular tagging, and sensing. Scalable and deterministic heterointegration strategies for single QDs have, however, remained largely out of reach due to inherent material incompatibilities with conventional semiconductor manufacturing processes. To advance scalable photonic quantum device architectures, it is therefore crucial to adopt placement and heterointegration strategies that can address these challenges. Here, an electrohydrodynamic (EHD) printing model is presented, single particle extraction electrodynamics (SPEED) printing, that exploits a novel regime of nanoscale dielectrophoretics to print and deterministically position single colloidal QDs. Using QDs solubilized in apolar solvents, this additive, a near-zero-waste nanomanufacturing process, overcomes continuum fluid surface energetics and stochastic imprecision that limited previous colloidal deposition strategies, achieving selective extraction and deposition of individual QDs at sub-zeptoliter volumes. Photoluminescence and autocorrelation function (g(2)) measurements confirm nanophotonic cavity-QD integration and single-photon emission from single printed QDs. By enabling deterministic placement of single quantum dots, this method provides a powerful, scalable, and sustainable platform for integrating complex photonic circuits and quantum light sources with nanoscale precision.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"16 1\",\"pages\":\"e13707\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202513707\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202513707","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The unique optical properties of quantum dots (QDs), size-tunable emission, and high quantum yield make them ideal candidates for applications in secure quantum communication, quantum computing, targeted single-cell and molecular tagging, and sensing. Scalable and deterministic heterointegration strategies for single QDs have, however, remained largely out of reach due to inherent material incompatibilities with conventional semiconductor manufacturing processes. To advance scalable photonic quantum device architectures, it is therefore crucial to adopt placement and heterointegration strategies that can address these challenges. Here, an electrohydrodynamic (EHD) printing model is presented, single particle extraction electrodynamics (SPEED) printing, that exploits a novel regime of nanoscale dielectrophoretics to print and deterministically position single colloidal QDs. Using QDs solubilized in apolar solvents, this additive, a near-zero-waste nanomanufacturing process, overcomes continuum fluid surface energetics and stochastic imprecision that limited previous colloidal deposition strategies, achieving selective extraction and deposition of individual QDs at sub-zeptoliter volumes. Photoluminescence and autocorrelation function (g(2)) measurements confirm nanophotonic cavity-QD integration and single-photon emission from single printed QDs. By enabling deterministic placement of single quantum dots, this method provides a powerful, scalable, and sustainable platform for integrating complex photonic circuits and quantum light sources with nanoscale precision.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.