{"title":"PFIG-Palm:基于像素和特征识别引导的可控掌纹生成。","authors":"Yuchen Zou,Huikai Shao,Chengcheng Liu,Siyu Zhu,Zongqing Hou,Dexing Zhong","doi":"10.1109/tip.2025.3616611","DOIUrl":null,"url":null,"abstract":"Palmprint recognition offers a promising solution for convenient and private authentication. However, the scarcity of large-scale palmprint datasets constrains its development and application. Recent approaches have sought to mitigate this issue by synthesizing palmprints based on Bézier curves. Due to the lack of paired data between curves and palmprints, it is difficult to generate curve-driven palmprints with precise identity. To address this challenge, we propose a novel Pixel and Feature Identity Guidance (PFIG) framework to synthesize realistic palmprints, whose IDs are strictly governed by the Bézier curves. In order to establish ID mapping, an ID Injection (IDI) module is constructed to synthesize pseudo-paired data. Two cross-domain ID consistency losses at pixel and feature levels are further proposed to strictly preserve the semantic information of the input ID curves. Experimental results demonstrate that our ID-guided approach can synthesize more realistic palmprints with controllable identities. Based on only 80,000 synthesized palmprints for pre-training, the recognition accuracy can be improved by more than 18% in terms of TAR@1e-6. When trained exclusively on synthetic data, our method achieves superior performance to existing synthetic approaches. The source code is available at https://github.com/YuchenZou/PFIG-Palm.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"58 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PFIG-Palm: Controllable Palmprint Generation via Pixel and Feature Identity Guidance.\",\"authors\":\"Yuchen Zou,Huikai Shao,Chengcheng Liu,Siyu Zhu,Zongqing Hou,Dexing Zhong\",\"doi\":\"10.1109/tip.2025.3616611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Palmprint recognition offers a promising solution for convenient and private authentication. However, the scarcity of large-scale palmprint datasets constrains its development and application. Recent approaches have sought to mitigate this issue by synthesizing palmprints based on Bézier curves. Due to the lack of paired data between curves and palmprints, it is difficult to generate curve-driven palmprints with precise identity. To address this challenge, we propose a novel Pixel and Feature Identity Guidance (PFIG) framework to synthesize realistic palmprints, whose IDs are strictly governed by the Bézier curves. In order to establish ID mapping, an ID Injection (IDI) module is constructed to synthesize pseudo-paired data. Two cross-domain ID consistency losses at pixel and feature levels are further proposed to strictly preserve the semantic information of the input ID curves. Experimental results demonstrate that our ID-guided approach can synthesize more realistic palmprints with controllable identities. Based on only 80,000 synthesized palmprints for pre-training, the recognition accuracy can be improved by more than 18% in terms of TAR@1e-6. When trained exclusively on synthetic data, our method achieves superior performance to existing synthetic approaches. The source code is available at https://github.com/YuchenZou/PFIG-Palm.\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tip.2025.3616611\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tip.2025.3616611","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
PFIG-Palm: Controllable Palmprint Generation via Pixel and Feature Identity Guidance.
Palmprint recognition offers a promising solution for convenient and private authentication. However, the scarcity of large-scale palmprint datasets constrains its development and application. Recent approaches have sought to mitigate this issue by synthesizing palmprints based on Bézier curves. Due to the lack of paired data between curves and palmprints, it is difficult to generate curve-driven palmprints with precise identity. To address this challenge, we propose a novel Pixel and Feature Identity Guidance (PFIG) framework to synthesize realistic palmprints, whose IDs are strictly governed by the Bézier curves. In order to establish ID mapping, an ID Injection (IDI) module is constructed to synthesize pseudo-paired data. Two cross-domain ID consistency losses at pixel and feature levels are further proposed to strictly preserve the semantic information of the input ID curves. Experimental results demonstrate that our ID-guided approach can synthesize more realistic palmprints with controllable identities. Based on only 80,000 synthesized palmprints for pre-training, the recognition accuracy can be improved by more than 18% in terms of TAR@1e-6. When trained exclusively on synthetic data, our method achieves superior performance to existing synthetic approaches. The source code is available at https://github.com/YuchenZou/PFIG-Palm.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.