Ashleigh M Peck, Alan Lymbery, Siobhon Egan, Amanda Ash
{"title":"澳大利亚库蚊科鸟类寄生虫的分子检测。","authors":"Ashleigh M Peck, Alan Lymbery, Siobhon Egan, Amanda Ash","doi":"10.1093/jme/tjaf142","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquitoes (Culicidae) are the most important vectors of human and animal diseases globally, making them valuable tools for the molecular surveillance of blood-borne pathogens. By screening mosquito populations, we can evaluate local disease prevalence and ascertain which vector species are involved in local transmission cycles. This study presents the first targeted mosquito-based surveillance of blood parasites in Western Australia. Over a 2-year surveillance program in Perth, Western Australia, 3,288 mosquitoes from 12 species across 5 genera were collected and screened in 461 pools. Parasite prevalence and diversity were evaluated using polymerase chain reaction screening of the Haemosporida cytochrome b gene region, and the Dirofilaria 12S rDNA gene region. Haemosporida were detected in 3.9% of mosquito pools, with 72.2% of positives found in Culex species pools. Avian Haemosporida comprised 83.3% of the total detections. Known avian Haemosporida lineages detected included 1 Haemoproteus (H. zosteropis) and 2 Plasmodium (BELL01 and MYNA02). Three novel lineages, Plasmodium CULPER01-03, were identified. Plasmodium falciparum was identified in 2 pools, and no Dirofilaria were detected. These findings indicate that Perth harbors a diverse range of avian Haemosporida, which may be regionally specific, as all lineages detected have only been identified in the Oceania region. The predominance of positive detections in the Culex pipiens species complex supports their role as the primary vectors of avian Plasmodium. This study highlights the utility of mosquito surveillance for monitoring blood-borne parasites and contributes new insight into parasite diversity and vector associations in Australia.</p>","PeriodicalId":94091,"journal":{"name":"Journal of medical entomology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular detection of avian parasites in Australian mosquitoes (Culicidae).\",\"authors\":\"Ashleigh M Peck, Alan Lymbery, Siobhon Egan, Amanda Ash\",\"doi\":\"10.1093/jme/tjaf142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mosquitoes (Culicidae) are the most important vectors of human and animal diseases globally, making them valuable tools for the molecular surveillance of blood-borne pathogens. By screening mosquito populations, we can evaluate local disease prevalence and ascertain which vector species are involved in local transmission cycles. This study presents the first targeted mosquito-based surveillance of blood parasites in Western Australia. Over a 2-year surveillance program in Perth, Western Australia, 3,288 mosquitoes from 12 species across 5 genera were collected and screened in 461 pools. Parasite prevalence and diversity were evaluated using polymerase chain reaction screening of the Haemosporida cytochrome b gene region, and the Dirofilaria 12S rDNA gene region. Haemosporida were detected in 3.9% of mosquito pools, with 72.2% of positives found in Culex species pools. Avian Haemosporida comprised 83.3% of the total detections. Known avian Haemosporida lineages detected included 1 Haemoproteus (H. zosteropis) and 2 Plasmodium (BELL01 and MYNA02). Three novel lineages, Plasmodium CULPER01-03, were identified. Plasmodium falciparum was identified in 2 pools, and no Dirofilaria were detected. These findings indicate that Perth harbors a diverse range of avian Haemosporida, which may be regionally specific, as all lineages detected have only been identified in the Oceania region. The predominance of positive detections in the Culex pipiens species complex supports their role as the primary vectors of avian Plasmodium. This study highlights the utility of mosquito surveillance for monitoring blood-borne parasites and contributes new insight into parasite diversity and vector associations in Australia.</p>\",\"PeriodicalId\":94091,\"journal\":{\"name\":\"Journal of medical entomology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical entomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jme/tjaf142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jme/tjaf142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular detection of avian parasites in Australian mosquitoes (Culicidae).
Mosquitoes (Culicidae) are the most important vectors of human and animal diseases globally, making them valuable tools for the molecular surveillance of blood-borne pathogens. By screening mosquito populations, we can evaluate local disease prevalence and ascertain which vector species are involved in local transmission cycles. This study presents the first targeted mosquito-based surveillance of blood parasites in Western Australia. Over a 2-year surveillance program in Perth, Western Australia, 3,288 mosquitoes from 12 species across 5 genera were collected and screened in 461 pools. Parasite prevalence and diversity were evaluated using polymerase chain reaction screening of the Haemosporida cytochrome b gene region, and the Dirofilaria 12S rDNA gene region. Haemosporida were detected in 3.9% of mosquito pools, with 72.2% of positives found in Culex species pools. Avian Haemosporida comprised 83.3% of the total detections. Known avian Haemosporida lineages detected included 1 Haemoproteus (H. zosteropis) and 2 Plasmodium (BELL01 and MYNA02). Three novel lineages, Plasmodium CULPER01-03, were identified. Plasmodium falciparum was identified in 2 pools, and no Dirofilaria were detected. These findings indicate that Perth harbors a diverse range of avian Haemosporida, which may be regionally specific, as all lineages detected have only been identified in the Oceania region. The predominance of positive detections in the Culex pipiens species complex supports their role as the primary vectors of avian Plasmodium. This study highlights the utility of mosquito surveillance for monitoring blood-borne parasites and contributes new insight into parasite diversity and vector associations in Australia.