相关成像将电生理学与三维小鼠心脏重建相结合,揭示细胞类型之间的电耦合。

IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Francesco Giardini, Camilla Olianti, Gerard A Marchal, Fernando Campos, Valentina Romanelli, Joshua Steyer, Josef Madl, Roberto Piersanti, Giulia Arecchi, Induja Perumal Vanaja, Valentina Biasci, Eva A Rog-Zielinska, Gabriella Nesi, Leslie M Loew, Elisabetta Cerbai, Stephen P Chelko, Francesco Regazzoni, Axel Loewe, Martin J Bishop, Marco Mongillo, Peter Kohl, Tania Zaglia, Callum M Zgierski-Johnston, Leonardo Sacconi
{"title":"相关成像将电生理学与三维小鼠心脏重建相结合,揭示细胞类型之间的电耦合。","authors":"Francesco Giardini, Camilla Olianti, Gerard A Marchal, Fernando Campos, Valentina Romanelli, Joshua Steyer, Josef Madl, Roberto Piersanti, Giulia Arecchi, Induja Perumal Vanaja, Valentina Biasci, Eva A Rog-Zielinska, Gabriella Nesi, Leslie M Loew, Elisabetta Cerbai, Stephen P Chelko, Francesco Regazzoni, Axel Loewe, Martin J Bishop, Marco Mongillo, Peter Kohl, Tania Zaglia, Callum M Zgierski-Johnston, Leonardo Sacconi","doi":"10.1038/s44161-025-00728-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac fibrosis contributes to electrical conduction disturbances, yet its specific impact on conduction remains unclear, hindering predictive insight into cardiac electrophysiology and arrhythmogenesis. Arrhythmogenic cardiomyopathy is associated with fibrotic remodeling, and it accounts for most cases of stress-related arrhythmic sudden death. Here we develop a correlative imaging approach to integrate macroscale cardiac electrophysiology with three-dimensional microscale reconstructions of the ventricles. We apply this tool to a desmoglein-2 mutant mouse model to characterize the dynamics of conduction wavefronts and relate them to the underlying structural substrate. We observed that conduction through fibrotic tissue areas shows a frequency-dependent behavior, where conduction fails at high stimulation frequencies; this promotes reentrant arrhythmias, even in regions that were electrophysiologically inconspicuous at lower stimulation rates. We found that fibrotic areas undergo electrophysiological remodeling that acts as a low-pass filter for conduction, quantitatively explained by computational models informed by structural data. Collectively, our study provides a structure-function mapping pipeline and describes a pro-arrhythmogenic mechanism in arrhythmogenic cardiomyopathy.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlative imaging integrates electrophysiology with three-dimensional murine heart reconstruction to reveal electrical coupling between cell types.\",\"authors\":\"Francesco Giardini, Camilla Olianti, Gerard A Marchal, Fernando Campos, Valentina Romanelli, Joshua Steyer, Josef Madl, Roberto Piersanti, Giulia Arecchi, Induja Perumal Vanaja, Valentina Biasci, Eva A Rog-Zielinska, Gabriella Nesi, Leslie M Loew, Elisabetta Cerbai, Stephen P Chelko, Francesco Regazzoni, Axel Loewe, Martin J Bishop, Marco Mongillo, Peter Kohl, Tania Zaglia, Callum M Zgierski-Johnston, Leonardo Sacconi\",\"doi\":\"10.1038/s44161-025-00728-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac fibrosis contributes to electrical conduction disturbances, yet its specific impact on conduction remains unclear, hindering predictive insight into cardiac electrophysiology and arrhythmogenesis. Arrhythmogenic cardiomyopathy is associated with fibrotic remodeling, and it accounts for most cases of stress-related arrhythmic sudden death. Here we develop a correlative imaging approach to integrate macroscale cardiac electrophysiology with three-dimensional microscale reconstructions of the ventricles. We apply this tool to a desmoglein-2 mutant mouse model to characterize the dynamics of conduction wavefronts and relate them to the underlying structural substrate. We observed that conduction through fibrotic tissue areas shows a frequency-dependent behavior, where conduction fails at high stimulation frequencies; this promotes reentrant arrhythmias, even in regions that were electrophysiologically inconspicuous at lower stimulation rates. We found that fibrotic areas undergo electrophysiological remodeling that acts as a low-pass filter for conduction, quantitatively explained by computational models informed by structural data. Collectively, our study provides a structure-function mapping pipeline and describes a pro-arrhythmogenic mechanism in arrhythmogenic cardiomyopathy.</p>\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44161-025-00728-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00728-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心脏纤维化有助于电传导障碍,但其对传导的具体影响尚不清楚,阻碍了对心脏电生理和心律失常发生的预测性认识。心律失常性心肌病与纤维化重构有关,它是大多数与压力相关的心律失常猝死病例的病因。在这里,我们开发了一种相关的成像方法,将宏观心脏电生理与心室的三维微观重建相结合。我们将该工具应用于粘粒蛋白2突变小鼠模型,以表征传导波前的动力学,并将其与潜在的结构基质联系起来。我们观察到,通过纤维化组织区域的传导表现出频率依赖行为,在高刺激频率下传导失败;这促进了可重入性心律失常,即使在低刺激率下电生理上不明显的区域也是如此。我们发现纤维化区域经历电生理重塑,作为传导的低通滤波器,通过结构数据的计算模型定量解释。总的来说,我们的研究提供了一个结构-功能映射管道,并描述了致心律失常心肌病的促心律失常机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlative imaging integrates electrophysiology with three-dimensional murine heart reconstruction to reveal electrical coupling between cell types.

Cardiac fibrosis contributes to electrical conduction disturbances, yet its specific impact on conduction remains unclear, hindering predictive insight into cardiac electrophysiology and arrhythmogenesis. Arrhythmogenic cardiomyopathy is associated with fibrotic remodeling, and it accounts for most cases of stress-related arrhythmic sudden death. Here we develop a correlative imaging approach to integrate macroscale cardiac electrophysiology with three-dimensional microscale reconstructions of the ventricles. We apply this tool to a desmoglein-2 mutant mouse model to characterize the dynamics of conduction wavefronts and relate them to the underlying structural substrate. We observed that conduction through fibrotic tissue areas shows a frequency-dependent behavior, where conduction fails at high stimulation frequencies; this promotes reentrant arrhythmias, even in regions that were electrophysiologically inconspicuous at lower stimulation rates. We found that fibrotic areas undergo electrophysiological remodeling that acts as a low-pass filter for conduction, quantitatively explained by computational models informed by structural data. Collectively, our study provides a structure-function mapping pipeline and describes a pro-arrhythmogenic mechanism in arrhythmogenic cardiomyopathy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信