将直接电刺激与大脑连接相结合,可以预测损伤性语言障碍及其恢复。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Ludovico Coletta, Paolo Avesani, Luca Zigiotto, Martina Venturini, Luciano Annicchiarico, Laura Vavassori, Sharna D Jamadar, Emma X Liang, Justine Y Hansen, Bratislav Misic, Sam Ng, Hugues Duffau, Silvio Sarubbo
{"title":"将直接电刺激与大脑连接相结合,可以预测损伤性语言障碍及其恢复。","authors":"Ludovico Coletta, Paolo Avesani, Luca Zigiotto, Martina Venturini, Luciano Annicchiarico, Laura Vavassori, Sharna D Jamadar, Emma X Liang, Justine Y Hansen, Bratislav Misic, Sam Ng, Hugues Duffau, Silvio Sarubbo","doi":"10.1038/s43856-025-01121-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neurological conditions account for millions of deaths per year and induce long-lasting cognitive impairments. The disruption of structural brain networks predicts the emergence of cognitive impairments in stroke cases, but the role of the white matter in modeling longitudinal behavioral trajectories in glioma patients is understudied.</p><p><strong>Methods: </strong>We analyzed 486 intracranial brain stimulations from 297 patients (age range 37-40, male ratio 53-64% depending on the functional categories) along with functional and structural brain connectivity data from over 1750 healthy individuals, to create a network mapping method able to identify the neural substrate causally involved in language production. We tested the validity of our procedure by (i) quantifying the spatial correspondence between white matter metabolic and hemodynamic spontaneous activity, measured via resting-state functional Magnetic Resonance Imaging and [18 F]-fluorodeoxyglucose functional Positron Emission Tomography (respectively); (ii) predicting unseen intracranial stimulations points; (iii) modeling the severity of stroke-induced aphasia (n = 105) and the longitudinal recovery of language abilities in glioma patients (n = 42, 3 timepoints).</p><p><strong>Results: </strong>We show that spontaneous white matter hemodynamic oscillations map into metabolic fluctuations. We also demonstrate that the integration of patient-specific intracranial stimulation points and normative human connectivity data (i) is predictive of unseen stimulation points; (ii) provides better estimates than total lesion volume in predicting the severity of stroke-induced aphasia symptoms; (iii) models post-operative language recovery trajectories better than state-of-the-art clinical measures in glioma patients.</p><p><strong>Conclusions: </strong>This work presents a data-driven and neurobiologically grounded tool for modeling cognitive and neurological impairments in terms of network disruption, demonstrating improved precision over existing approaches.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"416"},"PeriodicalIF":5.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501223/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating direct electrical stimulation with brain connectivity predicts lesion-induced language impairment and recovery.\",\"authors\":\"Ludovico Coletta, Paolo Avesani, Luca Zigiotto, Martina Venturini, Luciano Annicchiarico, Laura Vavassori, Sharna D Jamadar, Emma X Liang, Justine Y Hansen, Bratislav Misic, Sam Ng, Hugues Duffau, Silvio Sarubbo\",\"doi\":\"10.1038/s43856-025-01121-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neurological conditions account for millions of deaths per year and induce long-lasting cognitive impairments. The disruption of structural brain networks predicts the emergence of cognitive impairments in stroke cases, but the role of the white matter in modeling longitudinal behavioral trajectories in glioma patients is understudied.</p><p><strong>Methods: </strong>We analyzed 486 intracranial brain stimulations from 297 patients (age range 37-40, male ratio 53-64% depending on the functional categories) along with functional and structural brain connectivity data from over 1750 healthy individuals, to create a network mapping method able to identify the neural substrate causally involved in language production. We tested the validity of our procedure by (i) quantifying the spatial correspondence between white matter metabolic and hemodynamic spontaneous activity, measured via resting-state functional Magnetic Resonance Imaging and [18 F]-fluorodeoxyglucose functional Positron Emission Tomography (respectively); (ii) predicting unseen intracranial stimulations points; (iii) modeling the severity of stroke-induced aphasia (n = 105) and the longitudinal recovery of language abilities in glioma patients (n = 42, 3 timepoints).</p><p><strong>Results: </strong>We show that spontaneous white matter hemodynamic oscillations map into metabolic fluctuations. We also demonstrate that the integration of patient-specific intracranial stimulation points and normative human connectivity data (i) is predictive of unseen stimulation points; (ii) provides better estimates than total lesion volume in predicting the severity of stroke-induced aphasia symptoms; (iii) models post-operative language recovery trajectories better than state-of-the-art clinical measures in glioma patients.</p><p><strong>Conclusions: </strong>This work presents a data-driven and neurobiologically grounded tool for modeling cognitive and neurological impairments in terms of network disruption, demonstrating improved precision over existing approaches.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"416\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501223/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01121-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01121-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:神经系统疾病每年导致数百万人死亡,并诱发长期认知障碍。脑结构网络的破坏预示着中风病例中认知障碍的出现,但白质在模拟神经胶质瘤患者纵向行为轨迹中的作用尚未得到充分研究。方法:我们分析了来自297名患者(年龄37-40岁,男性比例53-64%,取决于功能类别)的486次颅内脑刺激,以及来自1750多名健康个体的功能和结构脑连接数据,以创建一种能够识别与语言产生有因果关系的神经基质的网络映射方法。我们测试了我们的程序的有效性:(i)量化白质代谢和血流动力学自发活动之间的空间对应关系,分别通过静息状态功能性磁共振成像和[18 F]-氟脱氧葡萄糖功能性正电子发射断层扫描测量;(ii)预测颅内未见刺激点;(iii)模拟脑胶质瘤患者脑卒中性失语的严重程度(n = 105)和语言能力的纵向恢复(n = 42,3个时间点)。结果:我们发现自发白质血流动力学振荡映射到代谢波动。我们还证明,整合患者特异性颅内刺激点和规范的人类连接数据(i)是预测未知的刺激点;(ii)在预测中风引起的失语症状的严重程度方面,提供比总的病变体积更好的估计;(iii)对胶质瘤患者术后语言恢复轨迹的建模优于最先进的临床测量。结论:这项工作提出了一种数据驱动的神经生物学基础工具,用于在网络中断方面对认知和神经损伤进行建模,证明了比现有方法更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating direct electrical stimulation with brain connectivity predicts lesion-induced language impairment and recovery.

Background: Neurological conditions account for millions of deaths per year and induce long-lasting cognitive impairments. The disruption of structural brain networks predicts the emergence of cognitive impairments in stroke cases, but the role of the white matter in modeling longitudinal behavioral trajectories in glioma patients is understudied.

Methods: We analyzed 486 intracranial brain stimulations from 297 patients (age range 37-40, male ratio 53-64% depending on the functional categories) along with functional and structural brain connectivity data from over 1750 healthy individuals, to create a network mapping method able to identify the neural substrate causally involved in language production. We tested the validity of our procedure by (i) quantifying the spatial correspondence between white matter metabolic and hemodynamic spontaneous activity, measured via resting-state functional Magnetic Resonance Imaging and [18 F]-fluorodeoxyglucose functional Positron Emission Tomography (respectively); (ii) predicting unseen intracranial stimulations points; (iii) modeling the severity of stroke-induced aphasia (n = 105) and the longitudinal recovery of language abilities in glioma patients (n = 42, 3 timepoints).

Results: We show that spontaneous white matter hemodynamic oscillations map into metabolic fluctuations. We also demonstrate that the integration of patient-specific intracranial stimulation points and normative human connectivity data (i) is predictive of unseen stimulation points; (ii) provides better estimates than total lesion volume in predicting the severity of stroke-induced aphasia symptoms; (iii) models post-operative language recovery trajectories better than state-of-the-art clinical measures in glioma patients.

Conclusions: This work presents a data-driven and neurobiologically grounded tool for modeling cognitive and neurological impairments in terms of network disruption, demonstrating improved precision over existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信