Izidor Straus, Gaia Kravanja, Luka Hribar, Raphael Kriegl, Mikhail Shamonin, Irena Drevenšek-Olenik, Matija Jezeršek, Gašper Kokot
{"title":"激光微加工用于聚合物表面形貌设计。","authors":"Izidor Straus, Gaia Kravanja, Luka Hribar, Raphael Kriegl, Mikhail Shamonin, Irena Drevenšek-Olenik, Matija Jezeršek, Gašper Kokot","doi":"10.3791/68126","DOIUrl":null,"url":null,"abstract":"<p><p>Soft magnetoactive elastomers (MAEs) are smart materials that respond to external magnetic fields by dynamically altering their mechanical properties. They are composed of magnetically responsive microparticles embedded within a soft polymer matrix, exhibiting an effective shear modulus of up to 100 kPa. In recent decades, MAEs' bulk properties have been successfully exploited for applications such as dynamic vibration damping, vibration sensing, and actuation in soft robotics. Recent research has shifted to their surface properties, revealing promising results on tunable surface features such as roughness, adhesion, and wetting. Even the transport of small solid and fluid objects was demonstrated. The associated surface effects can be significantly enhanced through the precise engineering of surface topography. In this article, an efficient laser micromachining technique, with a resolution of 15 µm, is presented, which enables rapid prototyping of MAE surfaces. It allows the creation of various complex shapes and offers functionality beyond the one achievable with traditional molding techniques. Additionally, the approach is versatile and can be applied to any polymer that sufficiently absorbs the laser light. As an example, a lamellar surface micro-pattern fabrication process and its characterization by optical and scanning electron microscopies are shown. Its response to a magnetic field is demonstrated. The technique provides a flexible and fast solution for optimizing polymer surface design across a wide range of applications.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 223","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Micromachining for Polymer Surface Topography Design.\",\"authors\":\"Izidor Straus, Gaia Kravanja, Luka Hribar, Raphael Kriegl, Mikhail Shamonin, Irena Drevenšek-Olenik, Matija Jezeršek, Gašper Kokot\",\"doi\":\"10.3791/68126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soft magnetoactive elastomers (MAEs) are smart materials that respond to external magnetic fields by dynamically altering their mechanical properties. They are composed of magnetically responsive microparticles embedded within a soft polymer matrix, exhibiting an effective shear modulus of up to 100 kPa. In recent decades, MAEs' bulk properties have been successfully exploited for applications such as dynamic vibration damping, vibration sensing, and actuation in soft robotics. Recent research has shifted to their surface properties, revealing promising results on tunable surface features such as roughness, adhesion, and wetting. Even the transport of small solid and fluid objects was demonstrated. The associated surface effects can be significantly enhanced through the precise engineering of surface topography. In this article, an efficient laser micromachining technique, with a resolution of 15 µm, is presented, which enables rapid prototyping of MAE surfaces. It allows the creation of various complex shapes and offers functionality beyond the one achievable with traditional molding techniques. Additionally, the approach is versatile and can be applied to any polymer that sufficiently absorbs the laser light. As an example, a lamellar surface micro-pattern fabrication process and its characterization by optical and scanning electron microscopies are shown. Its response to a magnetic field is demonstrated. The technique provides a flexible and fast solution for optimizing polymer surface design across a wide range of applications.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 223\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/68126\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68126","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Laser Micromachining for Polymer Surface Topography Design.
Soft magnetoactive elastomers (MAEs) are smart materials that respond to external magnetic fields by dynamically altering their mechanical properties. They are composed of magnetically responsive microparticles embedded within a soft polymer matrix, exhibiting an effective shear modulus of up to 100 kPa. In recent decades, MAEs' bulk properties have been successfully exploited for applications such as dynamic vibration damping, vibration sensing, and actuation in soft robotics. Recent research has shifted to their surface properties, revealing promising results on tunable surface features such as roughness, adhesion, and wetting. Even the transport of small solid and fluid objects was demonstrated. The associated surface effects can be significantly enhanced through the precise engineering of surface topography. In this article, an efficient laser micromachining technique, with a resolution of 15 µm, is presented, which enables rapid prototyping of MAE surfaces. It allows the creation of various complex shapes and offers functionality beyond the one achievable with traditional molding techniques. Additionally, the approach is versatile and can be applied to any polymer that sufficiently absorbs the laser light. As an example, a lamellar surface micro-pattern fabrication process and its characterization by optical and scanning electron microscopies are shown. Its response to a magnetic field is demonstrated. The technique provides a flexible and fast solution for optimizing polymer surface design across a wide range of applications.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.