{"title":"黄芩苷通过抑制hif -1α-介导的Warburg效应抑制结核分枝杆菌诱导的巨噬细胞热亡。","authors":"Jianchao Wu, Fanglin Liu, Jingjing Shen, Hemin Zhang, Yaqi Liu, Jinxia Sun, Guizhen Yang, Yuejuan Zheng, Xin Jiang","doi":"10.1080/13510002.2025.2565861","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a major global health threat due to prolonged treatment and drug-resistant strains. Host-directed therapy (HDT), which modulates host-pathogen interactions, offers potential to shorten treatment and limit resistance. This study investigates the effects of Scutellarin (SCU), a flavonoid from Scutellaria baicalensis, on Mtb-infected macrophages within the HDT framework.</p><p><strong>Methods: </strong>Anti-pyroptotic and anti-inflammatory effects of SCU were assessed in Mtb-infected THP-1 and J774A.1 macrophages, and in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Mitochondrial function was evaluated by oxygen consumption rate(OCR), membrane potential, and superoxide levels; glycolytic activity was measured by proton efflux rate (GlycoPER). Expression of inflammasome-related markers was analyzed by Western blot, qPCR, ELISA, immunofluorescence, and flow cytometry. The role of hypoxia-inducible factor 1-alpha (HIF-1α) was examined via siRNA knockdown.</p><p><strong>Results: </strong>SCU inhibited NLRP3 inflammasome activation, reduced IL-1β and IL-18 secretion, and attenuating pyroptosis. It restored mitochondrial integrity by regulating p-DRP1, MFN2, and Cytochrome C expression, and suppressed HIF-1α-mediated glycolytic reprogramming. Silencing of HIF-1α confirmed its role in SCU's mechanism. In vivo, SCU reduced pulmonary inflammation and cytokine release in LPS-induced ALI.</p><p><strong>Conclusion: </strong>SCU alleviates Mtb-induced pyroptosis and inflammation in macrophages by inhibiting the HIF-1α-mediated Warburg effect.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2565861"},"PeriodicalIF":7.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scutellarin suppresses Mycobacterium tuberculosis-induced pyroptosis in macrophages by inhibiting the HIF-1α-mediated Warburg effect.\",\"authors\":\"Jianchao Wu, Fanglin Liu, Jingjing Shen, Hemin Zhang, Yaqi Liu, Jinxia Sun, Guizhen Yang, Yuejuan Zheng, Xin Jiang\",\"doi\":\"10.1080/13510002.2025.2565861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a major global health threat due to prolonged treatment and drug-resistant strains. Host-directed therapy (HDT), which modulates host-pathogen interactions, offers potential to shorten treatment and limit resistance. This study investigates the effects of Scutellarin (SCU), a flavonoid from Scutellaria baicalensis, on Mtb-infected macrophages within the HDT framework.</p><p><strong>Methods: </strong>Anti-pyroptotic and anti-inflammatory effects of SCU were assessed in Mtb-infected THP-1 and J774A.1 macrophages, and in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Mitochondrial function was evaluated by oxygen consumption rate(OCR), membrane potential, and superoxide levels; glycolytic activity was measured by proton efflux rate (GlycoPER). Expression of inflammasome-related markers was analyzed by Western blot, qPCR, ELISA, immunofluorescence, and flow cytometry. The role of hypoxia-inducible factor 1-alpha (HIF-1α) was examined via siRNA knockdown.</p><p><strong>Results: </strong>SCU inhibited NLRP3 inflammasome activation, reduced IL-1β and IL-18 secretion, and attenuating pyroptosis. It restored mitochondrial integrity by regulating p-DRP1, MFN2, and Cytochrome C expression, and suppressed HIF-1α-mediated glycolytic reprogramming. Silencing of HIF-1α confirmed its role in SCU's mechanism. In vivo, SCU reduced pulmonary inflammation and cytokine release in LPS-induced ALI.</p><p><strong>Conclusion: </strong>SCU alleviates Mtb-induced pyroptosis and inflammation in macrophages by inhibiting the HIF-1α-mediated Warburg effect.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"2565861\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2025.2565861\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2565861","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Scutellarin suppresses Mycobacterium tuberculosis-induced pyroptosis in macrophages by inhibiting the HIF-1α-mediated Warburg effect.
Background: Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a major global health threat due to prolonged treatment and drug-resistant strains. Host-directed therapy (HDT), which modulates host-pathogen interactions, offers potential to shorten treatment and limit resistance. This study investigates the effects of Scutellarin (SCU), a flavonoid from Scutellaria baicalensis, on Mtb-infected macrophages within the HDT framework.
Methods: Anti-pyroptotic and anti-inflammatory effects of SCU were assessed in Mtb-infected THP-1 and J774A.1 macrophages, and in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Mitochondrial function was evaluated by oxygen consumption rate(OCR), membrane potential, and superoxide levels; glycolytic activity was measured by proton efflux rate (GlycoPER). Expression of inflammasome-related markers was analyzed by Western blot, qPCR, ELISA, immunofluorescence, and flow cytometry. The role of hypoxia-inducible factor 1-alpha (HIF-1α) was examined via siRNA knockdown.
Results: SCU inhibited NLRP3 inflammasome activation, reduced IL-1β and IL-18 secretion, and attenuating pyroptosis. It restored mitochondrial integrity by regulating p-DRP1, MFN2, and Cytochrome C expression, and suppressed HIF-1α-mediated glycolytic reprogramming. Silencing of HIF-1α confirmed its role in SCU's mechanism. In vivo, SCU reduced pulmonary inflammation and cytokine release in LPS-induced ALI.
Conclusion: SCU alleviates Mtb-induced pyroptosis and inflammation in macrophages by inhibiting the HIF-1α-mediated Warburg effect.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.