Tien-En Tan, Christopher Z Y Sun, Stanley S J Poh, Joshua Lim, Jasmin X J Teo, Sonali Dey, Zachary W X Chua, Jing Guo, Zhenxun Wang, Hwee Goon Tay, Beau J Fenner
{"title":"一项研究已经结束,但还有很多有待研究:遗传性视网膜疾病的基因治疗现状。","authors":"Tien-En Tan, Christopher Z Y Sun, Stanley S J Poh, Joshua Lim, Jasmin X J Teo, Sonali Dey, Zachary W X Chua, Jing Guo, Zhenxun Wang, Hwee Goon Tay, Beau J Fenner","doi":"10.1080/17460751.2025.2571360","DOIUrl":null,"url":null,"abstract":"<p><p>Gene therapy has ushered in a new era for the treatment of inherited retinal diseases (IRDs). The approval of voretigene neparvovec-rzyl (Luxturna) for <i>RPE65</i>-associated retinal dystrophy marked a pivotal milestone, establishing proof-of-concept that gene addition can restore visual function in IRDs. However, the success of Luxturna is tempered by the reality that it applies to a narrow subset of IRDs, and that no other IRD gene therapy has thus far received regulatory approval. This review outlines the current landscape of IRD gene therapy, including trials for several forms of IRD including achromatopsia, choroideremia, Leber congenital amaurosis, X-linked retinitis pigmentosa, and X-linked retinoschisis. We highlight the central challenges facing the field: narrow gene- or variant-specific indications, vector limitations, and reliance on suboptimal clinical trial endpoints. The review also discusses emerging strategies - including dual AAV and split-intein vectors, non-viral delivery platforms, and precision gene editing technologies such as CRISPR, base editing, and prime editing. These innovations promise to expand therapeutic reach. Finally, we emphasize the need for improved regulatory frameworks and ethical considerations for gene-based therapies for IRD. The field now stands at a critical juncture, where the lessons of Luxturna can inform a more scalable, inclusive, and transformative future.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"1-18"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One down but many more to go: the state of gene therapy for inherited retinal disease.\",\"authors\":\"Tien-En Tan, Christopher Z Y Sun, Stanley S J Poh, Joshua Lim, Jasmin X J Teo, Sonali Dey, Zachary W X Chua, Jing Guo, Zhenxun Wang, Hwee Goon Tay, Beau J Fenner\",\"doi\":\"10.1080/17460751.2025.2571360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene therapy has ushered in a new era for the treatment of inherited retinal diseases (IRDs). The approval of voretigene neparvovec-rzyl (Luxturna) for <i>RPE65</i>-associated retinal dystrophy marked a pivotal milestone, establishing proof-of-concept that gene addition can restore visual function in IRDs. However, the success of Luxturna is tempered by the reality that it applies to a narrow subset of IRDs, and that no other IRD gene therapy has thus far received regulatory approval. This review outlines the current landscape of IRD gene therapy, including trials for several forms of IRD including achromatopsia, choroideremia, Leber congenital amaurosis, X-linked retinitis pigmentosa, and X-linked retinoschisis. We highlight the central challenges facing the field: narrow gene- or variant-specific indications, vector limitations, and reliance on suboptimal clinical trial endpoints. The review also discusses emerging strategies - including dual AAV and split-intein vectors, non-viral delivery platforms, and precision gene editing technologies such as CRISPR, base editing, and prime editing. These innovations promise to expand therapeutic reach. Finally, we emphasize the need for improved regulatory frameworks and ethical considerations for gene-based therapies for IRD. The field now stands at a critical juncture, where the lessons of Luxturna can inform a more scalable, inclusive, and transformative future.</p>\",\"PeriodicalId\":21043,\"journal\":{\"name\":\"Regenerative medicine\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17460751.2025.2571360\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2025.2571360","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
One down but many more to go: the state of gene therapy for inherited retinal disease.
Gene therapy has ushered in a new era for the treatment of inherited retinal diseases (IRDs). The approval of voretigene neparvovec-rzyl (Luxturna) for RPE65-associated retinal dystrophy marked a pivotal milestone, establishing proof-of-concept that gene addition can restore visual function in IRDs. However, the success of Luxturna is tempered by the reality that it applies to a narrow subset of IRDs, and that no other IRD gene therapy has thus far received regulatory approval. This review outlines the current landscape of IRD gene therapy, including trials for several forms of IRD including achromatopsia, choroideremia, Leber congenital amaurosis, X-linked retinitis pigmentosa, and X-linked retinoschisis. We highlight the central challenges facing the field: narrow gene- or variant-specific indications, vector limitations, and reliance on suboptimal clinical trial endpoints. The review also discusses emerging strategies - including dual AAV and split-intein vectors, non-viral delivery platforms, and precision gene editing technologies such as CRISPR, base editing, and prime editing. These innovations promise to expand therapeutic reach. Finally, we emphasize the need for improved regulatory frameworks and ethical considerations for gene-based therapies for IRD. The field now stands at a critical juncture, where the lessons of Luxturna can inform a more scalable, inclusive, and transformative future.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.